首页> 美国卫生研究院文献>Biomedical Optics Express >Second Harmonic Generation for time-resolved monitoring of membrane pore dynamics subserving electroporation of neurons
【2h】

Second Harmonic Generation for time-resolved monitoring of membrane pore dynamics subserving electroporation of neurons

机译:第二谐波产生用于时间分辨监测膜孔动力学保护神经元电穿孔

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Electroporation of neurons, i.e. electric-field induced generation of membrane nanopores to facilitate internalization of molecules, is a classic technique used in basic neuroscience research and recently has been proposed as a promising therapeutic strategy in the area of neuro-oncology. To optimize electroporation parameters, optical techniques capable of delivering time and spatially-resolved information on electroporation pore formation at the nanometer scale would be advantageous. For this purpose we describe here a novel optical method based on second harmonic generation (SHG) microscopy. Due to the nonlinear and coherent nature of SHG, the 3D radiation lobes from stained neuronal membranes are sensitive to the spatial distribution of scatterers in the illuminated patch, and in particular to nanopore formation.We used phase-array analysis to computationally study the SHG signal as a function of nanopore size and nanopore population density and confirmed experimentally, in accordance with previous work, the dependence of nanopore properties on membrane location with respect to the electroporation electric field; higher nanopore densities, lasting < 5 milliseconds, are observed at membrane patches perpendicular to the field whereas lower density is observed at partly tangent locations. Differences between near-anode and near-cathode cell poles are also measured, showing higher pore densities at the anodic pole compared to cathodic pole. This technique is promising for the study of nanopore dynamics in neurons and for the optimization of novel electroporation-based therapeutic approaches.
机译:神经元的电穿孔,即电场诱导的膜纳米孔的生成,以促进分子的内在化,是基础神经科学研究中使用的经典技术,最近已被提出作为神经肿瘤学领域的一种有前途的治疗策略。为了优化电穿孔参数,能够以纳米级传递关于电穿孔孔形成的时间和空间分辨信息的光学技术将是有利的。为此,我们在此描述一种基于二次谐波生成(SHG)显微镜的新颖光学方法。由于SHG的非线性和相干特性,染色神经元膜的3D辐射波瓣对照明斑块中散射体的空间分布特别是纳米孔形成敏感。我们使用相控阵分析来计算研究SHG信号作为纳米孔尺寸和纳米孔种群密度的函数,并根据先前的工作实验证实,纳米孔性质对膜位置相对于电穿孔电场的依赖性;在垂直于电场的膜片上观察到更高的纳米孔密度,持续时间<5毫秒,而在部分切线位置观察到更低的密度。还测量了近阳极和近阴极电池极之间的差异,与阳极相比,阳极极处的孔密度更高。该技术有望用于研究神经元中的纳米孔动力学,并优化基于电穿孔的新型治疗方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号