首页> 美国卫生研究院文献>Biomicrofluidics >Using microfluidic devices to study thrombosis in pathological blood flows
【2h】

Using microfluidic devices to study thrombosis in pathological blood flows

机译:使用微流控设备研究病理性血流中的血栓形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extreme flows can exist within pathological vessel geometries or mechanical assist devices which create complex forces and lead to thrombogenic problems associated with disease. Turbulence and boundary layer separation are difficult to obtain in microfluidics due to the low Reynolds number flow in small channels. However, elongational flows, extreme shear rates and stresses, and stagnation point flows are possible using microfluidics and small perfusion volumes. In this review, a series of microfluidic devices used to study pathological blood flows are described. In an extreme stenosis channel pre-coated with fibrillar collagen that rapidly narrows from 500 μm to 15 μm, the plasma von Willebrand Factor (VWF) will elongate and assemble into thick fiber bundles on the collagen. Using a micropost-impingement device, plasma flow impinging on the micropost generates strong elongational and wall shear stresses that trigger the growth of a VWF bundle around the post (no collagen required). Using a stagnation-point device to mimic the zone near flow reattachment, blood can be directly impinged upon a procoagulant surface of collagen and the tissue factor. Clots formed at the stagnation point of flow impingement have a classic core-shell architecture where the core is highly activated (P-selectin positive platelets and fibrin rich). Finally, within occlusive clots that fill a microchannel, the Darcy flow driven by ΔP/L > 70 mm-Hg/mm-clot is sufficient to drive NETosis of entrapped neutrophils, an event not requiring either thrombin or fibrin. Novel microfluidic devices are powerful tools to access physical environments that exist in human disease.
机译:病理血管的几何形状或机械辅助装置中可能存在极高的流量,这会产生复杂的力并导致与疾病相关的血栓形成问题。由于小通道中的雷诺数低,在微流控中很难获得湍流和边界层分离。但是,使用微流体和较小的灌注量可能会产生伸长流动,极限剪切速率和应力以及停滞点流动。在这篇综述中,描述了用于研究病理性血流的一系列微流体装置。在一个预先涂有原纤维胶原蛋白的狭窄狭窄通道中,其从500μm迅速缩小到15μm,血浆von Willebrand Factor(VWF)会伸长并组装成胶原上的粗纤维束。使用微柱撞击装置,撞击在微柱上的血浆流会产生很强的伸长应力和壁切应力,从而触发柱周围的VWF束生长(不需要胶原蛋白)。使用停滞点装置来模拟血流重新附着附近的区域,可以将血液直接撞击到胶原蛋白和组织因子的促凝表面上。在流动冲击停滞点形成的凝块具有经典的核-壳结构,其中核被高度激活(P-选择蛋白阳性血小板和富含纤维蛋白)。最后,在充满微通道的闭塞血块中,由ΔP/ L> 70 mm-Hg / mm-clot驱动的达西血流足以驱动被包埋的中性粒细胞发生NETosis,这一事件不需要凝血酶或血纤蛋白。新型微流控设备是访问人类疾病中存在的物理环境的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号