首页> 中文期刊> 《应用数学和力学:英文版》 >Electroosmotic oscillatory flow of micropolar fluid in microchannels:application to dynamics of blood flow in microfluidic devices

Electroosmotic oscillatory flow of micropolar fluid in microchannels:application to dynamics of blood flow in microfluidic devices

         

摘要

The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss' s law of charge distribution are solved within the framework of the Debye-H¨uckel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in microbio-fluidic devices.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号