首页> 美国卫生研究院文献>Biomicrofluidics >Effect of Joule heating on isoelectric focusing of proteins in a microchannel
【2h】

Effect of Joule heating on isoelectric focusing of proteins in a microchannel

机译:焦耳热对微通道中蛋白质等电聚焦的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electric field-driven separation and purification techniques, such as isoelectric focusing (IEF) and isotachophoresis, generate heat in the system that can affect the performance of the separation process. In this study, a new mathematical model is presented for IEF that considers the temperature rise due to Joule heating. We used the model to study focusing phenomena and separation performance in a microchannel. A finite volume-based numerical technique is developed to study temperature-dependent IEF. Numerical simulation for narrow range IEF (6 < pH < 10) is performed in a straight microchannel for 100 ampholytes and two model proteins: staphylococcal nuclease and pancreatic ribonuclease. Separation results of the two proteins are obtained with and without considering the temperature rise due to Joule heating in the system for a nominal electric field of 100 V/cm. For the no Joule heating case, constant properties are used, while for the Joule heating case, temperature-dependent titration curves and thermo-physical properties are used. Our numerical results show that the temperature change due to Joule heating has a significant impact on the final focusing points of proteins, which can lower the separation performance considerably. In the absence of advection and any active cooling mechanism, the temperature increase is the highest at the mid-section of a microchannel. We also found that the maximum temperature in the system is a strong function of the ΔpK  value of the carrier ampholytes. Simulation results are also obtained for different values of applied electric fields in order to find the optimum working range considering the simulation time and buffer temperature. Moreover, the model is extended to study IEF in a straight microchip where pH is formed by supplying H+ and OH, and the thermal analysis shows that the heat generation is negligible in ion supplied IEF.
机译:电场驱动的分离和纯化技术,例如等电聚焦(IEF)和等速电泳,会在系统中产生热量,从而影响分离过程的性能。在这项研究中,为IEF提出了一个新的数学模型,该模型考虑了焦耳加热引起的温度升高。我们使用该模型研究微通道中的聚焦现象和分离性能。发展了一种基于有限体积的数值技术来研究与温度有关的IEF。在一个直线微通道中,对100个两性电解质和两种模型蛋白:葡萄球菌核酸酶和胰核糖核酸酶进行了窄范围IEF(6 HpH 10)的数值模拟。在不考虑系统在100 V / cm的电场下因焦耳热引起的温度升高的情况下,获得了两种蛋白质的分离结果。在无焦耳加热的情况下,使用恒定的特性,而在焦耳加热的情况下,使用取决于温度的滴定曲线和热物理特性。我们的数值结果表明,焦耳加热引起的温度变化对蛋白质的最终聚焦点有重大影响,这可能会大大降低分离性能。在没有对流和任何主动冷却机制的情况下,温度上升在微通道的中部最高。我们还发现,系统中的最高温度是载体两性电解质的ΔpK值的强函数。还针对不同的施加电场值获得了仿真结果,以便在考虑仿真时间和缓冲温度的情况下找到最佳工作范围。此外,该模型扩展到研究在通过供应H + 和OH -形成pH的纯微芯片中的IEF,并且热分析表明热量的产生可以忽略不计在离子提供的IEF中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号