首页> 美国卫生研究院文献>Biomicrofluidics >Modeling of dielectrophoretic transport of myoglobin molecules in microchannels
【2h】

Modeling of dielectrophoretic transport of myoglobin molecules in microchannels

机译:肌红蛋白分子在微通道中介电电泳的建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Myoglobin is one of the premature identifying cardiac markers, whose concentration increases from 90 pg∕ml or less to over 250 ng∕ml in the blood serum of human beings after minor heart attack. Separation, detection, and quantification of myoglobin play a vital role in revealing the cardiac arrest in advance, which is the challenging part of ongoing research. In the present work, one of the electrokinetic approaches, i.e., dielectrophoresis (DEP), is chosen to separate the myoglobin. A mathematical model is developed for simulating dielectrophoretic behavior of a myoglobin molecule in a microchannel to provide a theoretical basis for the above application. This model is based on the introduction of a dielectrophoretic force and a dielectric myoglobin model. A dielectric myoglobin model is developed by approximating the shape of the myoglobin molecule as sphere, oblate, and prolate spheroids. A generalized theoretical expression for the dielectrophoretic force acting on respective shapes of the molecule is derived. The microchannel considered for analysis has an array of parallel rectangular electrodes at the bottom surface. The potential and electric field distributions are calculated using Green’s theorem method and finite element method. These results also compared to the Fourier series method, closed form solutions by Morgan et al. [J. Phys. D: Appl. Phys. 34, 1553 (2001)] and Chang et al. [J. Phys. D: Appl. Phys. 36, 3073 (2003)]. It is observed that both Green’s theorem based analytical solution and finite element based numerical solution for proposed model are closely matched for electric field and square electric field gradients. The crossover frequency is obtained as 40 MHz for given properties of myoglobin and for all approximated shapes of myoglobin molecule. The effect of conductivity of medium and myoglobin on the crossover frequency is also demonstrated. Further, the effect of hydration layer on the crossover frequency of myoglobin molecules is also presented. Both positive and negative DEP effects on myoglobin molecules are obtained by switching the frequency of applied electric field. The effect of different shapes of myoglobin on DEP force is studied and no significant effect on DEP force is observed. Finally, repulsion of myoglobin molecules from the electrode plane at 1 KHz frequency and 10 V applied voltage is observed. These results provide the ability of applying DEP force for manipulating nanosized biomolecules such as myoglobin.
机译:肌红蛋白是过早识别的心脏标志物之一,在轻微的心脏病发作后,其在人的血清中的浓度从90 pg / ml或更少增加到超过250 ng / ml。肌红蛋白的分离,检测和定量在提前揭示心脏骤停中起着至关重要的作用,这是正在进行的研究中具有挑战性的部分。在目前的工作中,选择一种电动方法,即介电电泳(DEP)来分离肌红蛋白。建立了用于模拟微通道中肌红蛋白分子介电电泳行为的数学模型,为上述应用提供了理论基础。该模型基于介电泳力和介电的肌红蛋白模型的引入。通过近似为球形,扁球形和扁球形的肌红蛋白分子的形状,可以开发介电的肌红蛋白模型。推导了作用于分子各个形状的介电泳力的一般理论表达式。考虑进行分析的微通道在底面上有一个平行的矩形电极阵列。电位和电场分布是使用格林定理方法和有限元方法计算的。这些结果还与Morgan等人的封闭形式的傅里叶级数方法比较。 [J.物理D:应用物理34,1553(2001)]和Chang等。 [J.物理D:应用物理36,3073(2003)]。可以看出,对于所建议的模型,基于格林定理的解析解和基于有限元的数值解都与电场梯度和平方电场梯度紧密匹配。对于给定的肌红蛋白特性和所有近似形状的肌红蛋白分子,交叉频率为40 MHz。还证明了培养基和肌红蛋白的电导率对交叉频率的影响。此外,还提出了水合层对肌红蛋白分子交叉频率的影响。对肌红蛋白分子的正和负DEP效应都可以通过切换施加电场的频率来获得。研究了不同形状的肌红蛋白对DEP力的影响,未观察到对DEP力的显着影响。最后,观察到肌红蛋白分子以1 KHz频率和10 V施加电压从电极平面排斥。这些结果提供了施加DEP力来操纵纳米生物分子(如肌红蛋白)的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号