首页> 美国卫生研究院文献>Biophysical Journal >Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing
【2h】

Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing

机译:两个不同的肌动蛋白网络介导牵引振荡以产生局灶性粘连机械感测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plasticity of the FA structure and the associated traction force to accurately sense ECM stiffness. Strikingly, FA traction forces oscillate in time and space, and govern the cell mechanosensing of ECM stiffness. However, precisely how and why the FA traction oscillates is unknown. We developed a model of FA growth that integrates the contributions of the branched actin network and stress fibers (SFs). Using the model in combination with experimental tests, we show that the retrograde flux of the branched actin network promotes the proximal growth of the FA and contributes to a traction peak near the FA’s distal tip. The resulting traction gradient within the growing FA favors SF formation near the FA’s proximal end. The SF-mediated actomyosin contractility further stabilizes the FA and generates a second traction peak near the center of the FA. Formin-mediated SF elongation negatively feeds back with actomyosin contractility, resulting in central traction peak oscillation. This underpins the observed FA traction oscillation and, importantly, broadens the ECM stiffness range over which FAs can accurately adapt to traction force generation. Actin cytoskeleton-mediated FA growth and maturation thus culminate with FA traction oscillation to drive efficient FA mechanosensing.
机译:粘着斑(FAs)是基于整合素的跨膜组件,可将细胞连接至其细胞外基质(ECM)。它们是机械传感器,细胞通过该机械传感器施加肌动蛋白细胞骨架介导的牵引力来感知ECM刚度。有趣的是,FA本身是动态结构,可根据机械力适应其生长。尚不清楚电池如何管理FA结构的可塑性和相关的牵引力,以准确地感测ECM刚度。引人注目的是,FA牵引力会在时间和空间中振荡,并控制ECM刚度的细胞机械传感。但是,FA牵引的振荡方式和振荡原因尚不清楚。我们开发了一种FA增长模型,该模型整合了分支肌动蛋白网络和应力纤维(SF)的贡献。通过将模型与实验测试结合使用,我们发现分支肌动蛋白网络的逆行通量促进了FA的近端生长,并在FA的远端尖端附近产生了牵引峰。在不断增长的FA中产生的牵引力梯度有利于FA近端附近的SF形成。 SF介导的肌动球蛋白收缩力进一步稳定了FA,并在FA中心附近产生了第二个牵引峰。福尔明介导的SF伸长以肌动球蛋白的收缩性为负反馈,导致中央牵引峰振荡。这支撑了观察到的FA牵引振动,重要的是,拓宽了EC刚度范围,FA可以在该范围内精确地适应牵引力的产生。肌动蛋白细胞骨架介导的FA生长和成熟最终以FA牵引振荡达到高峰,以驱动有效的FA机械传感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号