首页> 美国卫生研究院文献>Biophysical Journal >A Quantum Mechanic/Molecular Mechanic Study of the Wild-Type and N155S Mutant HIV-1 Integrase Complexed with Diketo Acid
【2h】

A Quantum Mechanic/Molecular Mechanic Study of the Wild-Type and N155S Mutant HIV-1 Integrase Complexed with Diketo Acid

机译:与二酮酸复合的野生型和N155S突变HIV-1整合酶的量子力学/分子力学研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Integrase (IN) is one of the three human immunodeficiency virus type 1 (HIV-1) enzymes essential for effective viral replication. Recently, mutation studies have been reported that have shown that a certain degree of viral resistance to diketo acids (DKAs) appears when some amino acid residues of the IN active site are mutated. Mutations represent a fascinating experimental challenge, and we invite theoretical simulations for the disclosure of still unexplored features of enzyme reactions. The aim of this work is to understand the molecular mechanisms of HIV-1 IN drug resistance, which will be useful for designing anti-HIV inhibitors with unique resistance profiles. In this study, we use molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy for wild-type and N155S mutant HIV-1 IN, both complexed with a DKA. This hybrid methodology has the advantage of the inclusion of quantum effects such as ligand polarization upon binding, which can be very important when highly polarizable groups are embedded in anisotropic environments, for example in metal-containing active sites. Furthermore, an energy terms decomposition analysis was performed to determine contributions of individual residues to the enzyme-inhibitor interactions. The results reveal that there is a strong interaction between the Lys-159, Lys-156, and Asn-155 residues and Mg2+ cation and the DKA inhibitor. Our calculations show that the binding energy is higher in wild-type than in the N155S mutant, in accordance with the experimental results. The role of the mutated residue has thus been checked as maintaining the structure of the ternary complex formed by the protein, the Mg2+ cation, and the inhibitor. These results might be useful to design compounds with more interesting anti-HIV-1 IN activity on the basis of its three-dimensional structure.
机译:整合酶(IN)是有效进行病毒复制所必需的三种人类1型免疫缺陷病毒(HIV-1)酶之一。近来,已经报道了突变研究,其表明当IN活性位点的一些氨基酸残基突变时,对二酮酸(DKA)产生一定程度的病毒抗性。突变代表了一个迷人的实验挑战,我们邀请理论模拟来公开酶反应尚未探索的特征。这项工作的目的是了解HIV-1 IN耐药性的分子机制,这对于设计具有独特耐药性的抗HIV抑制剂将很有用。在这项研究中,我们使用分子动力学模拟,在混合量子力学/分子力学(QM / MM)方法中,确定野生型和N155S突变HIV-1 IN的蛋白质-配体相互作用能,二者均与DKA配合。这种混合方法的优点是在结合时包括量子效应,例如配体极化,这在将高度可极化的基团嵌入各向异性环境(例如含金属的活性位点)中时非常重要。此外,进行了能量项分解分析,以确定各个残基对酶-抑制剂相互作用的贡献。结果表明,Lys-159,Lys-156和Asn-155残基与Mg 2 + 阳离子和DKA抑制剂之间存在强相互作用。我们的计算表明,根据实验结果,野生型的结合能比N155S突变体的结合能更高。因此,已经检查了突变残基的作用,以维持由蛋白质,Mg 2 + 阳离子和抑制剂形成的三元复合物的结构。这些结果可能有助于设计基于其三维结构具有更有趣的抗HIV-1 IN活性的化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号