首页> 美国卫生研究院文献>Biophysical Journal >Random-Walk Model of Diffusion in Three Dimensions in Brain Extracellular Space: Comparison with Microfiberoptic Photobleaching Measurements
【2h】

Random-Walk Model of Diffusion in Three Dimensions in Brain Extracellular Space: Comparison with Microfiberoptic Photobleaching Measurements

机译:脑细胞外空间中三维扩散的随机游走模型:与微纤维光漂白测量的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.
机译:大脑中细胞外空间(ECS)的扩散在药物输送,细胞间通讯和细胞外离子缓冲中很重要。 ECS约占脑实质体积的20%,并含有约50 nm的细胞间隙。我们开发了一个随机行走模型,以使用实际的ECS维度在三个维度上模拟大脑ECS中的大分子扩散。模型输入包括ECS体积分数(α),细胞大小,细胞间间隙几何形状,细胞间湖(大脑ECS的扩展区域)尺寸和扩散溶质的分子尺寸。模型输出是相对于脑ECS(Do / D)在水中的相对溶质扩散。使用微纤维荧光光漂白方法测量了实验Do / D,以与模型预测进行比较,该方法涉及将微米尺寸的光纤立体定向插入小鼠大脑。脑中不同区域的小溶质钙黄绿素的Do / D在3.0-4.1范围内,并随着水中毒后脑细胞肿胀而增加。 Do / D也随着扩散溶质的大小增加而增加,特别是在深部脑核中。使用实际的α,细胞大小和细胞间间隙来测量Do / D的模拟要求在多细胞接触点处存在细胞间色淀,并且细胞间间隙的接触长度至少比细胞间小50倍。该模型可以准确预测不同溶质尺寸的Do / D。此外,该模型还显示出变化的ECS和细胞尺寸对Do / D产生了意想不到的影响,这暗示了湖泊溶质的捕集。我们的模型建立了几何约束条件,以定量地解释脑ECS中溶质和大分子扩散的相对适度的减慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号