首页> 美国卫生研究院文献>Biophysical Journal >Determinants within the Turret and Pore-Loop Domains of KCNQ3 K+ Channels Governing Functional Activity
【2h】

Determinants within the Turret and Pore-Loop Domains of KCNQ3 K+ Channels Governing Functional Activity

机译:控制功能活动的KCNQ3 K +通道的炮塔和孔环域内的决定因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

KCNQ1–5 (Kv7.1–7.5) subunits assemble to form a variety of functional K+ channels in the nervous system, heart, and epithelia. KCNQ1 and KCNQ4 homomers and KCNQ2/3 heteromers yield large currents, whereas KCNQ2 and KCNQ3 homomers yield small currents. Since the unitary conductance of KCNQ3 is five- to 10-fold greater than that of KCNQ4 or KCNQ1, these differences are even more striking. To test for differential membrane protein expression, we performed biotinylation and total internal reflection fluorescence imaging assays; however, both revealed only small differences among the channels, leading us to investigate other mechanisms at work. We probed the molecular determinants governing macroscopic current amplitudes, with focus on the turret and pore-loop domains of KCNQ1 and KCNQ3. Elimination of the putative N289 glycosylation site in KCNQ1 reduced current density by ∼56%. A chimera consisting of KCNQ3 with the turret domain (TD) of KCNQ1 increased current density by about threefold. Replacement of the proximal half of the TD in KCNQ3 with that of KCNQ1 increased current density by fivefold. A triple chimera containing the TD of KCNQ1 and the carboxy terminus of KCNQ4 yielded current density 10- or sixfold larger than wild-type KCNQ3 or KCNQ1, respectively, suggesting that the effects on current amplitudes of the TD and the carboxy-terminus are additive. Critical was the role of the intracellular TEA+-binding site. The KCNQ3 (A315T) swap increased current density by 10-fold, and the converse KCNQ1 (T311A) swap reduced it by 10-fold. KCNQ3 (A315S) also yielded greatly increased current amplitudes, whereas currents from mutant A315V channels were very small. The KCNQ3 (A315T) mutation increased the sensitivity of the channels to external Ba2+ block by eight- to 28-fold, consistent with this mutation altering the structure of the selectivity filter. To investigate a structural hypothesis for the effects of these mutations, we performed homology modeling of the pore region of wild-type and mutant KCNQ3 channels, using KvAP as a template. The modeling suggests a critical stabilizing interaction between the pore helix and the selectivity filter that is absent in wild-type KCNQ3 and the A315V mutant, but present in the A315T and A315S mutants. We conclude that KCNQ3 homomers are well expressed at the plasma membrane, but that most wild-type channels are functionally silent, with rearrangements of the pore-loop architecture induced by the presence of a hydroxyl-containing residue at the 315 position “unlocking” the channels into a conductive conformation.
机译:KCNQ1-5(Kv7.1-7.5)亚基在神经系统,心脏和上皮细胞中组装形成各种功能性K + 通道。 KCNQ1和KCNQ4均聚物以及KCNQ2 / 3异构体产生大电流,而KCNQ2和KCNQ3均聚物产生小电流。由于KCNQ3的单位电导比KCNQ4或KCNQ1的单位电导大5到10倍,因此这些差异更加明显。为了测试差异膜蛋白的表达,我们进行了生物素化和全内反射荧光成像分析;但是,两者都揭示了渠道之间的微小差异,因此我们需要研究其他起作用的机制。我们探讨了控制宏观电流幅度的分子决定因素,重点研究了KCNQ1和KCNQ3的转塔和孔环结构域。消除KCNQ1中假定的N289糖基化位点可使电流密度降低约56%。由具有KCNQ1的炮塔结构域(TD)的KCNQ3组成的嵌合体将电流密度提高了约三倍。用KCNQ1替换KCNQ3中TD的近端一半可使电流密度增加五倍。包含KCNQ1的TD和KCNQ4的羧基末端的三重嵌合体产生的电流密度分别比野生型KCNQ3或KCNQ1大10或六倍,这表明对TD和羧基末端的电流幅度的影响是累加的。细胞内TEA + -结合位点的作用至关重要。 KCNQ3(A315T)交换将电流密度提高了10倍,而相反的KCNQ1(T311A)交换将电流密度降低了10倍。 KCNQ3(A315S)也产生了大大增加的电流幅度,而来自突变A315V通道的电流很小。 KCNQ3(A315T)突变使通道对外部Ba 2 + 阻滞的敏感性提高了8到28倍,与该突变改变了选择性滤光片的结构一致。为了研究这些突变的影响的结构假设,我们使用KvAP作为模板,对野生型和突变KCNQ3通道的孔区域进行了同源建模。该模型表明,孔螺旋和选择性过滤器之间存在关键的稳定相互作用,这在野生型KCNQ3和A315V突变体中不存在,但在A315T和A315S突变体中却存在。我们得出的结论是,KCNQ3同源物在质膜上表达良好,但是大多数野生型通道在功能上是沉默的,并且由于315位含羟基残基的存在而引起的孔环结构重排“解锁”。导入导电构象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号