首页> 美国卫生研究院文献>The Journal of Neuroscience >Modulation of a Neural Network by Physiological Levels of Oxygen in Lobster Stomatogastric Ganglion
【2h】

Modulation of a Neural Network by Physiological Levels of Oxygen in Lobster Stomatogastric Ganglion

机译:龙虾气胃神经节中氧气的生理水平对神经网络的调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although a large body of literature has been devoted to the role of O2 in the CNS, how neural networks function during long-term exposures to low but physiological O2 partial pressure (Po2) has never been studied. We addressed this issue in crustaceans, where arterial blood Po2 is set in the 1–3 kPa range, a level that is similar to the most frequently measured tissue Po2 in the vertebrate CNS. We demonstrate that over its physiological range, O2 can reversibly modify the activity of the pyloric network in the lobster Homarus gammarus. This network is composed of 12 identified neurons that spontaneously generate a triphasic rhythmic motor output in vitro as well as in vivo. When Po2 decreased from 20 to 1 kPa, the pyloric cycle period increased by 30–40%, and the neuronal pattern was modified. These effects were all dose- and state-dependent. Specifically, we found that the single lateral pyloric (LP) neuron was responsible for the O2-mediated changes. At low Po2, the LP burst duration increased without change in its intraburst firing frequency. Because LP inhibits the pyloric pacemaker neurons, the increased LP burst duration delayed the onset of each rhythmic pacemaker burst, thereby reducing significantly the cycling frequency. When we deleted LP, the network was no longer O2-sensitive.In conclusion, we propose that (1) O2 has specific neuromodulator-like actions in the CNS and that (2) the physiological role of this reduction of activity and energy expenditure could be a key adaptation for tolerating low but physiological Po2 in sensitive neural networks.
机译:尽管大量文献致力于O2在中枢神经系统中的作用,但从未研究过神经网络在长期暴露于低但生理的O2分压(Po2)期间如何发挥作用。我们在甲壳类动物中解决了这个问题,其中动脉血Po2设置在1-3 kPa范围内,该水平与脊椎动物CNS中最常测量的组织Po2相似。我们证明,在其生理范围内,O2可以可逆地改变龙虾Homarusγ幽门网络的活动。该网络由12个已识别的神经元组成,这些神经元在体外以及体内都会自发产生三段性节律性运动输出。当Po2从20 kPa降低到1 kPa时,幽门循环周期增加了30–40%,并且神经元模式发生了改变。这些影响都是剂量和状态依赖性的。具体来说,我们发现单个外侧幽门(LP)神经元负责O2介导的变化。在低Po2下,LP突发持续时间增加,而其突发内触发频率不变。因为LP会抑制幽门起搏器神经元,所以增加的LP爆发持续时间会延迟每个有节奏的起搏器爆发的发作,从而显着降低循环频率。最后,我们建议(1)O2在中枢神经系统中具有特定的神经调节剂样作用,并且(2)这种活动减少和能量消耗减少的生理作用可以是耐受敏感神经网络中低但生理性Po2的关键适应方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号