首页> 外文学位 >In vivo modulation of rhythmically active neural networks in the crustacean stomatogastric ganglion.
【24h】

In vivo modulation of rhythmically active neural networks in the crustacean stomatogastric ganglion.

机译:甲壳动物气胃神经节中节律性活动神经网络的体内调节。

获取原文
获取原文并翻译 | 示例

摘要

Rhythmic motor patterns are found throughout all living organisms and are responsible for maintaining some of our most fundamental behaviors. The motor circuits producing these behaviors are flexible and able to adapt to changing internal and environmental conditions, yet stable enough to maintain function within certain boundaries. Central pattern generators (CPGs), which are the primary source of this stability, reliably maintain activity patterns and thus the behaviors they drive. The crab stomatogastric nervous system contains the well-characterized gastric mill (chewing) and pyloric (filtering of food) CPGs. In vitro, the pyloric rhythm is stereotyped with little variation over time. Temperature, inter-circuit interactions and neuromodulation can influence the rhythm, but most variation occurs between individuals, not within (Tang et al., 2012; Bucher et al.,). In vivo , the range of variation of the rhythm and the extent of external influences are, with few exceptions unknown (Hedrich et al., 2011; Soofi et al., 2014).;Using long-term recordings at constant temperature we identified the range and sources of variability of the pyloric and gastric mill rhythms In vivo. A 12 hour light-driven cycle influences the frequency of both the pyloric and gastric mill rhythms, however this can be overridden by other sensory influences, including feeding. Feeding also alters the structure of the pyloric rhythm as well as increases its frequency. The pyloric and gastric mill rhythms also exhibit intercircuit interactions consistent with those previously observed in vitro (Marder et al., 2005). Non-canonical rhythms which had previously not been shown to occur naturally were also observed.
机译:在所有活生物体中都发现有节律的运动模式,它们负责维持我们一些最基本的行为。产生这些行为的电动机电路是灵活的,能够适应不断变化的内部和环境条件,同时又足够稳定,可以在一定范围内保持功能。中央模式生成器(CPG)是这种稳定性的主要来源,它可靠地维护了活动模式,并因此维护了它们所驱动的行为。蟹的胃胃神经系统包含特征明确的胃磨(咀嚼)和幽门(食品过滤)CPG。在体外,幽门节律被定型,随时间变化很小。温度,电路间相互作用和神经调节均可影响节律,但大多数变异发生在个体之间,而不是个体内部(Tang等,2012; Bucher等,)。在体内,节律的变化范围和外部影响的程度,除少数例外未知外(Hedrich等,2011; Soofi等,2014);;使用恒温的长期记录,我们确定了幽门和胃磨坊节律变化的范围和来源。一个12小时的光驱动周期会影响幽门和胃磨的节律频率,但是可以被包括进食在内的其他感官影响所取代。进食还可以改变幽门节律的结构并增加其频率。幽门和胃磨的节律也表现出与以前在体外观察到的一致的电路间相互作用(Marder等,2005)。还观察到以前未证明自然发生的非规范节奏。

著录项

  • 作者

    Yarger, Alexandra Mead.;

  • 作者单位

    Illinois State University.;

  • 授予单位 Illinois State University.;
  • 学科 Biology.
  • 学位 M.S.
  • 年度 2015
  • 页码 71 p.
  • 总页数 71
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号