首页> 美国卫生研究院文献>Biophysical Journal >Molecular Dynamics Study of MscL Interactions with a Curved Lipid Bilayer
【2h】

Molecular Dynamics Study of MscL Interactions with a Curved Lipid Bilayer

机译:MscL与弯曲脂质双层相互作用的分子动力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanosensitivity is a ubiquitous sensory mechanism found in living organisms. The simplest known mechanotransducing mechanism is found in bacteria in the form of the mechanosensitive membrane channel of large conductance, MscL. This channel has been studied extensively using a variety of methods at a functional and structural level. The channel is gated by membrane tension in the lipid bilayer alone. It serves as a safety valve protecting bacterial cells against hypoosmotic shock. MscL of Escherichia coli embedded in bilayers composed of asymmetric amounts of single-tailed and double-tailed lipids has been shown to gate spontaneously, even in the absence of membrane tension. To gain insight into the effect of the lipid membrane composition and geometry on MscL structure, a fully solvated, all-atom model of MscL in a stress-free curved bilayer composed of double- and single-tailed lipids was studied using a 9.5-ns molecular dynamics simulation. The bilayer was modeled as a domed structure accommodating the asymmetric composition of the monolayers. During the course of the simulation a spontaneous restructuring of the periplasmic loops occurred, leading to interactions between one of the loops and phospholipid headgroups. Previous experimental studies of the role of the loops agree with the observation that opening starts with a restructuring of the periplasmic loop, suggesting an effect of the curved bilayer. Because of limited resources, only one simulation of the large system was performed. However, the results obtained suggest that through the geometry and composition of the bilayer the protein structure can be affected even on short timescales.
机译:机械敏感性是在活生物体中普遍存在的感觉机制。在细菌中发现了最简单的已知机械转导机制,即大电导的机械敏感膜通道MscL。已在功能和结构级别上使用各种方法对此通道进行了广泛的研究。仅通过脂质双层中的膜张力来控制通道。它起着安全阀的作用,保护细菌细胞免受低渗性冲击的侵害。已经证明,包埋在由不对称量的单尾和双尾脂质组成的双层中的大肠杆菌的MscL即使在没有膜张力的情况下也能自发门控。为了深入了解脂质膜的组成和几何形状对MscL结构的影响,使用9.5-ns研究了由双尾和单尾脂质组成的无应力弯曲双层中MscL的完全溶剂化全原子模型分子动力学模拟。将双层建模为容纳单层不对称成分的圆顶结构。在模拟过程中,周质环自发地发生了重组,导致环之一与磷脂头基之间的相互作用。先前关于环的作用的实验研究与以下观察结果一致,即打开始于周质环的重组,表明弯曲双层的作用。由于资源有限,仅对大型系统进行了一次仿真。但是,获得的结果表明,通过双层的几何结构和组成,即使在短时间范围内,蛋白质结构也可能受到影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号