首页> 美国卫生研究院文献>Biophysical Journal >Energy Transfer in Light-Harvesting Complexes LHCII and CP29 of Spinach Studied with Three Pulse Echo Peak Shift and Transient Grating
【2h】

Energy Transfer in Light-Harvesting Complexes LHCII and CP29 of Spinach Studied with Three Pulse Echo Peak Shift and Transient Grating

机译:三脉冲回波峰移和瞬态光栅研究菠菜光采复合物LHCII和CP29中的能量转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5–1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b ↔ Chl b energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b ↔ Chl b and fast Chl b → Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A3 and B3. For LHCII, the observed rates can best be understood if the same pair, A3 and B3, is involved in both fast Chl b ↔ Chl b and fast Chl a ↔ Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophyll binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.
机译:报道了在植物光收集复合物LHCII和CP29上的三脉冲回波峰移和瞬态光栅(TG)测量。 LHCII复合物是迄今为止高等植物中最丰富的光捕获复合物,并具有几种重要的生理功能,例如光捕获和光保护作用。我们的研究集中在LHCII和非常相似的CP29络合物的光捕获功能上,并揭示了迄今尚未解决的激发能转移过程。所有测量均在室温下使用从菠菜叶中分离的去污剂复合物进行。两种复合物都在650 nm的Chl b谱带和670 nm的Chl a谱带的蓝肩中被激发。 TG的指数拟合和三个脉冲回波峰位移衰减曲线用于估计观察到的能量转移过程的时间尺度。在650 nm处,TG衰减可以用CP29的130 fs和2.2 ps,LHCII的300 fs和2.8 ps的时间常数来描述。在670 nm处,TG对LHCII的衰减分量为230 fs和6 ps,对CP29的衰减分量为300 fs和5 ps。这些时间常数对应于众所周知的能量转移过程,对于650 nm TG,从Chlb到Chla,对于670 nm TG,从蓝色(670 nm)Chla到红色(680 nm)Chla。峰位移衰减时间完全不同。在650 nm处,我们发现LHCII的时间为150 fs和0.5–1 ps,CP29的时间为360 fs和3 ps,这主要与Chl b↔Chl b能量转移有关。在670 nm处,我们发现LHCII的时间为140 fs和3 ps,CP29的时间为3 ps,这可以与相对较蓝的Chls a或Chl a状态之间的快速转移(仅在LHCII中)和缓慢转移相关联。从CP29中快速Chl b↔Chl b和快速Chlb→Chl a转移的发生,我们得出结论,该复合物中至少存在两个混合的结合位点。通过CP29和LHCII上激子计算得出的观测速率的详细比较,使我们对这些混合位点的位置有了更深入的了解。最重要的是,对于CP29,我们发现Chl b对必须存在于位点A3和B3上的某些(不是全部)复合物中。对于LHCII,如果快速Chl b↔Chl b 和快速Chl a ↔Chl < em> 转移。因此,很可能在天然LHCII复合物中也出现了混合位点。叶绿素结合的这种灵活性将与LHCII复合物的聚集形式和叶黄素结合的一般灵活性相一致,并且可用于优化LHCII在特定情况下(例如在强光条件下)的作用。我们的研究是第一个为混合结合位点提供光谱证据的研究,也是第一个显示它们在天然复合物中的存在的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号