首页> 美国卫生研究院文献>Biophysical Journal >Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule.
【2h】

Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule.

机译:调节肾脏近端小管中pH和溶质浓度的细胞动力学模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport.
机译:开发了开路动力学模型来计算近端肾小管细胞的pH,溶质浓度和体积随时间的变化,以响应腔或肾小管周液成分中的诱发扰动。从电动方程计算溶质通量,其中包含已知载流子饱和度,变构依赖性和离子耦合比的术语。根据细胞电中性和相等的反向跨细胞和旁细胞电流的要求,反复确定顶端和基底外侧膜电位。该模型在一到四个迭代中收敛到精确到0.05%的膜电位。模型变量包括Na,K,HCO3,葡萄糖,pH(均匀CO2),体积以及顶膜和基底外侧膜电位的细胞浓度。基本模型包括Na / H,Na /葡萄糖,H和K的被动顶膜转运,Na / 3HCO3,K,H和葡萄糖的基底外侧转运以及Na,K,Cl和HCO3的旁细胞转运。顶端H和基底外侧的3Na / 2K-ATPases存在。顶端Na / H和基底外侧钾转运受pH变构调节。顶端Na / H转运,基底外侧Na / 3HCO3转运和3Na / 2K-ATPase饱和。从大鼠近端小管中的数据中选择模型参数。响应于顶端和肾小管Na和HCO3快速变化的细胞pH,Na和膜电位的大小和时间过程的模型预测与实验非常吻合。此外,该模型要求存在一个顶端H-ATPase,可被HCO3饱和的基底外侧Na / 3HCO3转运和电子中性基底外侧K转运。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号