首页> 美国卫生研究院文献>Biosensors >Separation and Detection of Escherichia coli and Saccharomyces cerevisiae Using a Microfluidic Device Integrated with an Optical Fibre
【2h】

Separation and Detection of Escherichia coli and Saccharomyces cerevisiae Using a Microfluidic Device Integrated with an Optical Fibre

机译:使用集成有光纤的微流控设备分离和检测大肠杆菌和啤酒酵母

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2–24 s and a flow rate range of 1.2–9.6 μL min1. The frequency and voltage were set to a constant value of 1MHz and 14Vpk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μL min1 at a constant frequency, voltage, and a low conductivity.
机译:本文描述了使用干膜抗(DFR)微流体通道的集成系统的开发,该系统由脉冲场介电泳场流分离(DEP-FFF)分离和光学检测组成。原型芯片采用脉冲DEP-FFF概念从连续流中分离出细胞(大肠杆菌和酿酒酵母),并测量了细胞的释放速率。通过在2–24 s的脉冲时间范围内和1.2–9.6的流量范围内改变脉冲时间来进行分离实验。 μ L min <数学xmlns:mml =” http: //www.w3.org/1998/Math/MathML“ id =” mm2“溢出=” scroll“> < mn> 1 。频率和电压设置为恒定值1 < mi mathvariant =“ normal”> M Hz和14 V pk-pk。细胞分选后,颗粒通过光纤,入射光被散射(或吸收),从而降低了透射光的强度。用分光光度计测量光水平的变化并记录为吸收光谱。结果表明,一般而言,流速和脉冲时间会影响大肠杆菌和酿酒酵母的分离。发现大肠杆菌具有最高的释放速率,其次是酿酒酵母。在这项研究中,开发的集成化实验室可以使两种具有不同细胞介电特性和粒径的微生物得以分离,并随后使用独特的光学特性进行检测。这两种微生物之间的最佳分离可以使用更长的12 s脉冲时间和更快的9.6 μ L min 1 在恒定的频率,电压和低电导率下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号