首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Building the space elevator: lessons from biological design
【2h】

Building the space elevator: lessons from biological design

机译:建造太空电梯:生物学设计的经验教训

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the biggest perceived challenges in building megastructures, such as the space elevator, is the unavailability of materials with sufficient tensile strength. The presumed necessity of very strong materials stems from a design paradigm which requires structures to operate at a small fraction of their maximum tensile strength (usually, 50% or less). This criterion limits the probability of failure by giving structures sufficient leeway in handling stochastic components, such as variability in material strength and/or external forces. While reasonable for typical engineering structures, low working stress ratios—defined as operating stress as a fraction of ultimate tensile strength—in the case of megastructures are both too stringent and unable to adequately control the failure probability. We draw inspiration from natural biological structures, such as bones, tendons and ligaments, which are made up of smaller substructures and exhibit self-repair, and suggest a design that requires structures to operate at significantly higher stress ratios, while maintaining reliability through a continuous repair mechanism. We outline a mathematical framework for analysing the reliability of structures with components exhibiting probabilistic rupture and repair that depend on their time-in-use (age). Further, we predict time-to-failure distributions for the overall structure. We then apply this framework to the space elevator and find that a high degree of reliability is achievable using currently existing materials, provided it operates at sufficiently high working stress ratios, sustained through an autonomous repair mechanism, implemented via, e.g. robots.
机译:在建造大型结构(例如太空电梯)中,最大的挑战之一是缺乏具有足够拉伸强度的材料。假定非常坚固的材料的必要性源于设计范式,该范式要求结构在其最大抗拉强度的一小部分(通常为50%或更小)下运行。该标准通过赋予结构足够的空间来处理随机组件,例如材料强度和/或外力的变化,来限制失效的可能性。虽然对于典型的工程结构而言是合理的,但对于大型结构而言,低工作应力比(定义为工作应力是极限抗拉强度的一部分)既太严格,也无法充分控制故障概率。我们从骨骼,腱和韧带等自然生物结构中汲取灵感,这些结构由较小的子结构组成并具有自我修复的功能,并提出了一种设计,要求结构在较高的应力比下工作,同时要通过连续不断地保持可靠性修复机制。我们概述了一个数学框架,用于分析结构的可靠性,这些结构的零件根据其使用时间(年龄)表现出概率性破裂和修复。此外,我们预测了整个结构的失效时间分布。然后,我们将此框架应用于太空电梯,并发现使用当前存在的材料可以实现高度的可靠性,只要它在足够高的工作应力比下运行,并通过自主修复机制(例如,通过机器人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号