首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains
【2h】

Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains

机译:有氧呼吸原核菌株比无氧呼吸和发酵菌株具有更宽的温度-pH-盐度细胞分裂空间

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.
机译:地球上的生物过程在一个受物理和化学极端因素约束的参数空间内运作。有氧呼吸可以使三磷酸腺苷的产量比无氧呼吸的产量高出一个数量级,并且在某些条件下,与其他分解代谢模式相比,微生物可以在更广泛的极端范围内繁殖。我们使用公布的241个原核生物菌株的生长数据来比较温度,pH和盐度值,以进行有氧和无氧代谢类群之间的细胞分裂。与使用其他无机底物或有机化合物作为电子受体的分类单元相比,使用氧作为末端电子受体的分离物在细胞分裂方面表现出更大的三维相空间(占总体积的90%)。总数量),所有组的增长特征都不同。要了解这些差异的机理基础,就需要将研究整合到微生物生态学,生理学和高能学中,重点是全球规模的过程。关键的知识缺口包括各种压力参数对吉布斯能量产量和微生物活性速率的综合影响,细胞能量学与极端适应之间的相互作用,以及将基于实验室的数据与细胞分裂的原位限制相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号