首页> 美国卫生研究院文献>Journal of the Royal Society Interface >In silico modelling of drug–polymer interactions for pharmaceutical formulations
【2h】

In silico modelling of drug–polymer interactions for pharmaceutical formulations

机译:药物配方中药物-聚合物相互作用的计算机模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer–drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = −1.1) in poly(l-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5–8% of the initial drug level) in 50 mg ml−1 PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml−1. However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4–9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ–propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles.
机译:通常在经过广泛的试验和错误实验之后,才选择用于将药物封装在药物制剂中的聚合物。为了加快赋形剂的选择程序,我们探索了聚合物-药物相互作用的粗粒计算机模拟(耗散粒子动力学(DPD)和使用MARTINI力场的粗粒分子动力学)来研究泼尼松龙的封装(log p = 1.6) ),对乙酰氨基酚(log p = 0.3)和异烟肼(log p = -1.1)在聚(l-乳酸)(PLA)控释微球中的封装以及在生物利用度增强季铵盐中异丙酚的封装(log p = 4.1)棕榈酰乙二醇铵壳聚糖(GCPQ)胶束。模拟已与实验数据进行了比较。 DPD模拟与实验数据具有良好的相关性,正确地表明疏水性药物(泼尼松龙和扑热息痛)可以封装在PLA微球中,并预测实验观察到的对乙酰氨基酚的封装水平(初始药物水平的5–8%)在50 mg ml < sup> -1 PLA微球,但仅当扑热息痛的初始水平超过5 mg ml -1 时。但是,中尺度技术无法模拟在实验中观察到的亲水性药物(异烟肼)包封(初始药物水平的4-9%)。使用MARTINI力场的分子动力学模拟表明,GCPQ的自组装速度很快,丙泊酚位于胶束疏水基团和亲水基团之间的界面上,并且丙泊酚在GCPQ胶束群体中分布不均。 GCPQ-丙泊酚实验还揭示了一群相对空洞且充满药物的GCPQ颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号