首页> 美国卫生研究院文献>Bosnian Journal of Basic Medical Sciences >Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering
【2h】

Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering

机译:进化工程获得的耐盐啤酒酵母突变体的生理和转录组学分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Salt-resistant yeast strains are highly demanded by industry due to the exposure of yeast cells to high concentrations of salt, in various industrial bioprocesses. The aim of this study was to perform a physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae (S. cerevisiae) mutant generated by evolutionary engineering. NaCl-resistant S. cerevisiae strains were obtained by ethyl methanesulfonate (EMS) mutagenesis followed by successive batch cultivations in the presence of gradually increasing NaCl concentrations, up to 8.5% w/v of NaCl (1.45 M). The most probable number (MPN) method, high-performance liquid chromatography (HPLC), and glucose oxidase/peroxidase method were used for physiological analysis, while Agilent yeast DNA microarray systems were used for transcriptome analysis. NaCl-resistant mutant strain T8 was highly cross-resistant to LiCl and highly sensitive to AlCl3. In the absence of NaCl stress, T8 strain had significantly higher trehalose and glycogen levels compared to the reference strain. Global transcriptome analysis by means of DNA microarrays showed that the genes related to stress response, carbohydrate transport, glycogen and trehalose biosynthesis, as well as biofilm formation, were upregulated. According to gene set enrichment analysis, 548 genes were upregulated and 22 downregulated in T8 strain, compared to the reference strain. Among the 548 upregulated genes, the highest upregulation was observed for the FLO11 (MUC1) gene (92-fold that of the reference strain). Overall, evolutionary engineering by chemical mutagenesis and increasing NaCl concentrations is a promising approach in developing industrial strains for biotechnological applications.
机译:由于在各种工业生物过程中酵母细胞暴露于高浓度的盐中,因此工业上对耐盐酵母菌株的需求很高。这项研究的目的是对通过进化工程产生的耐盐啤酒酵母(S. cerevisiae)突变体进行生理和转录组学分析。通过诱变甲烷磺酸乙酯(EMS),然后在逐渐增加的NaCl浓度(高达8.5%w / v NaCl(1.45 M))的存在下连续分批培养,获得耐NaCl的酿酒酵母菌株。生理分析使用最可能数法(MPN),高效液相色谱(HPLC)和葡萄糖氧化酶/过氧化物酶方法,而转录组分析则使用安捷伦酵母DNA微阵列系统。抗NaCl的突变菌株T8对LiCl具有高度的交叉抗性,对AlCl3具有高度的敏感性。在没有NaCl胁迫的情况下,与参考菌株相比,T8菌株的海藻糖和糖原水平明显更高。通过DNA微阵列的整体转录组分析显示,与应激反应,碳水化合物转运,糖原和海藻糖生物合成以及生物膜形成有关的基因被上调。根据基因集富集分析,与参考菌株相比,T8菌株中有548个基因上调,而22个下调。在548个上调基因中,FLO11(MUC1)基因的上调最高(是参考菌株的92倍)。总体而言,通过化学诱变和增加NaCl浓度进行进化工程是开发用于生物技术应用的工业菌株的一种有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号