首页> 美国卫生研究院文献>The Journal of Physiology >Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study
【2h】

Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study

机译:豚鼠胃无神经活动时起搏器相移:微电极阵列研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gastrointestinal (GI) motility is well organized. GI muscles act as a functional syncytium to achieve physiological functions under the control of neurones and pacemaker cells, which generate basal spontaneous pacemaker electrical activity. To date, it is unclear how spontaneous electrical activities are coupled, especially within a micrometre range. Here, using a microelectrode array, we show a spatio-temporal analysis of GI spontaneous electrical activity. The muscle preparations were isolated from guinea-pig stomach, and fixed in a chamber with an array of 8 × 8 planar multielectrodes (with 300 μm in interpolar distance). The electrical activities (field potentials) were simultaneously recorded through a multichannel amplifier system after high-pass filtering at 0.1 Hz. Dihydropyridine Ca2+ channel antagonists are known to differentiate the electrical pacemaker activity of interstitial cells of Cajal (ICCs) by suppressing smooth muscle activity. In the presence of nifedipine, we observed spontaneous electrical activities that were well synchronized over the array area, but had a clear phase shift depending on the distance. The additional application of tetrodotoxin (TTX) had little effect on the properties of the electrical activity. Furthermore, by constructing field potential images, we visualized the synchronization of pacemaker electrical activities resolving phase shifts that were measurable over several hundred micrometres. The results imply a phase modulation mechanism other than neural activity, and we postulate that this mechanism enables smooth GI motility. In addition, some preparations clearly showed plasticity of the pacemaker phase shift.
机译:胃肠道(GI)的运动组织良好。胃肠道肌肉充当功能性合胞体,在神经元和起搏器细胞的控制下实现生理功能,从而产生基础自发性起搏器电活动。迄今为止,还不清楚自发的电活动如何耦合,特别是在微米范围内。在这里,使用微电极阵列,我们显示了GI自发电活动的时空分析。从豚鼠胃中分离出肌肉制剂,并固定在一个装有8×8平面多电极阵列(极间距离为300μm)的室内。在0.1 Hz的高通滤波后,通过多通道放大器系统同时记录电活动(场电势)。已知二氢吡啶Ca 2+通道拮抗剂可通过抑制平滑肌活性来区分Cajal间质细胞(ICC)的电起搏器活性。在硝苯地平存在的情况下,我们观察到自发的电活动在整个阵列区域内同步良好,但根据距离具有明显的相移。河豚毒素(TTX)的额外应用对电活性的影响很小。此外,通过构造场电势图像,我们可视化了起搏器电活动的同步,从而解决了可测量数百微米的相移。结果暗示了除了神经活动以外的相位调制机制,并且我们推测该机制能够实现平滑的胃肠动力。另外,一些准备工作清楚地显示了起搏器相移的可塑性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号