Significant Na+ conductance has been described in only a'/> Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5
首页> 美国卫生研究院文献>The Journal of Physiology >Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5
【2h】

Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5

机译:人类延迟整流器K +通道Kv1.5中细胞内和细胞外K +对瞬时Na +电导的调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="enumerated" style="list-style-type:decimal">Significant Na+ conductance has been described in only a few native and cloned K+ channels, but has been used to characterize inactivation and K+ binding within the permeation pathway, and to refine models of K+ flux through multi-ion pores. Here we use Na+ permeation of the delayed rectifier K+ channel Kv1.5 to study extra- and intracellular K+ (o+ and i+, respectively) regulation of conductance and inactivation, using whole-cell recording from human embryonic kidney (HEK)-293 cells.Kv1.5 Na+ currents in the absence of o+ and i+ were confirmed by: (i) resistance of outward Na+ currents to dialysis by K+-free solutions; (ii) tail current reversal potential changes with o+ with a slope of 55·8 mV per decade; (iii) block by 4-aminopyridine (50 % at 50 μM), and resistance to Cl channel inhibition.Na+ currents were transient followed by a small sustained current. An envelope test confirmed that activated Kv1.5 channels conducted Na+, and that rapid current decay reflected C-type inactivation. Sustained currents (≈13 % of peak) represented Na+ flux through inactivated Kv1.5 channels.o+ could modulate the maximum available Na+ conductance in the stable cell line while channels were closed. Before the first pulse of a train, increasing o+ concentration increased the subsequent Na+ conductance from ≈15 (0 mM o+) to 30 nS (5 mM o+), with a Kd of 23 μM. Repeated low rate depolarizations in i+/o+ solutions induced a use-dependent loss of Kv1.5 channel Na+ conductance, distinct from that caused by C-type inactivation. o+ binding that sensed little of the electric field could prevent this secondary loss of available Kv1.5 channels with a Kd of 230 μM. These two effects on conductance were both voltage independent, and had no effect on channel inactivation rate.o+ concentrations ≥ 0·3 mM slowed the inactivation rate in a strongly voltage-dependent manner. This suggested it could compete for binding at a K+ site or sites deeper in the pore, as well as restoring the Na+ conductance. i+ was able to modulate the inactivation rate but was unable to affect conductance.Mutation of arginine 487 in the outer pore region of the channel to valine (R487V) greatly reduced C-type inactivation in Na+ solutions, caused loss of channel use dependence, and prevented any conductance increase upon the addition of 0·1 mM o+. Our results confirm the existence of a high affinity binding site at the selectivity filter that regulates inactivation, and also reveals the presence of at least one additional high affinity outer mouth site that predominantly regulates conductance of resting channels, and protects channels activated by depolarization when they conduct Na+.
机译:class =“ enumerated” style =“ list-style-type:decimal”> <!-list-behavior =枚举前缀-word = mark-type = decimal max-label-size = 0-> 仅在少数天然和克隆的K + 通道中描述了重要的Na + 电导,但已用于表征失活和K + 结合在渗透途径中,并完善通过多离子孔的K + 通量模型。在这里,我们使用延迟整流器K + 通道Kv1.5的Na + 渗透来研究细胞外和细胞内K + (<数学xmlns: mml =“ http://www.w3.org/1998/Math/MathML” id =“ M1”溢出=“ scroll”> K o + K i + )分别通过人类胚胎肾脏(HEK)-293细胞的全细胞记录来调节电导和失活。 Kv1.5 Na <在没有 + 当前不存在。id =“ M3”溢出=“ scroll”> < msubsup> K o + K i 通过以下方法证实了 + :(i)外向Na + 电流对K + 透析的抵抗力免费的解决方案; (ii)使用 < mrow> N o + ,斜率为55·8 mV每十年(iii)被4-氨基吡啶(50μM时占50%)阻滞,并且对Cl -通道抑制具有抗性。 Na + 电流是瞬态的其次是持续的小电流。包络试验证实激活的Kv1.5通道进行了Na + ,并且快速的电流衰减反映了C型失活。持续电流(峰值的≈13%)表示通过失活的Kv1.5通道的Na + 通量。 K o + 可以调节通道关闭时稳定细胞系中最大的Na + 电导率。在火车的第一个脉冲之前,增加 < mrow> K o + 浓度会增加随后的Na +电导率大约为15(0 mM <数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ M8”溢出=“ scroll”> < msubsup> K o + )到30 nS( 5 mM <数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ M9” overflow =“ scroll”> K < / mtext> o + ),Kd为23μM。在 N i + / N o + 解决方案引起了Kv1.5通道Na + 电导的使用相关损耗,这与由C型失活。 K o + 绑定几乎没有感应到电场,可以防止可用Kv1的二次损失。 5个通道,Kd为230μM。这两个对电导的影响都与电压无关,并且对通道失活率没有影响。 K o + 浓度≥0·3 mM以强烈的电压依赖性方式减慢了失活速率。这表明它可以竞争在K + 位或毛孔深处的结合,以及恢复Na + 电导。 K i + 能够调节失活率,但不能影响电导。 将通道外孔区域的精氨酸487突变为缬氨酸(R487V),大大减少了Na + 溶液中C型失活,导致通道使用依赖性丧失,并阻止了任何电导在增加0·1 mM后增加 < mrow> K o + 。我们的结果证实了选择性过滤器上存在一个高亲和力结合位点,该位点可调节失活,并且还揭示了至少存在一个另外的高亲和力外口位点,该位点主要调节静息通道的电导率,并保护通过去极化激活的通道。进行Na +

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号