首页> 美国卫生研究院文献>The Journal of Physiology >Analysis of potassium dynamics in mammalian brain tissue.
【2h】

Analysis of potassium dynamics in mammalian brain tissue.

机译:哺乳动物脑组织中钾动力学的分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Equations are derived for potassium (K+) dynamics in simplified models of brain tissue. These describe K+ movement in extracellular space, transfer of K+ associated with current flow through cells (the so-called spatial buffer mechanism) and equilibration between extracellular space and cytoplasm. Numerical calculations show that the principal data on K+ dynamics from various laboratories can be accounted for with simple assumptions about spatial buffer action and uptake. Much of the data is inconsistent with extracellular diffusion being the main mechanism for K+ flux through brain tissue, including some that has earlier been cited in support of this hypothesis. The buffering actions of spatial buffer transfer of K+ and of cytoplasmic equilibration, in which these mechanisms reduce rises of [K+]o that would otherwise occur, are analysed quantitatively for specific K+ source distributions and for spatial and temporal frequency components of general disturbances. Spatial buffer action has most effect in reducing [K+]o rises with net release over extensive zones of tissue (greater than ca. 200 micron in diameter) for periods of the order of minutes. Reductions greater than 75% may be achieved. With localized but prolonged release, the maximum [K+]o rise is little affected but the volume of tissue affected by more moderate rises is substantially reduced. Cytoplasmic K+ uptake also has most effect with widespread release, but its effect diminishes with prolonged periods of release. The effects of the buffering mechanisms and of K+ re-uptake into active neurones in determining the decline of [K+]o after a period of stimulation are considered. Re-uptake is unlikely to be the major factor responsible for [K+]o decline when this has a time course of only a few seconds. The properties necessary for the cells mediating the spatial buffer mechanisms, possibly glial cells, are assessed.
机译:在简化的脑组织模型中导出了钾(K +)动力学方程。这些描述了钾离子在细胞外空间的移动,与电流流过细胞相关的钾离子的转移(所谓的空间缓冲机制)以及细胞外空间与细胞质之间的平衡。数值计算表明,来自各个实验室的有关K +动力学的主要数据可以用关于空间缓冲作用和吸收的简单假设来解释。许多数据与细胞外扩散是通过脑组织进行钾离子流的主要机制不一致,其中包括早些时候为支持这一假设而引用的一些数据。针对特定的K +来源分布和一般干扰的时空频率分量,对K +的空间缓冲液转移和细胞质平衡的缓冲作用(其中这些机制减少了否则会发生的[K +] o升高)进行定量分析。空间缓冲作用在减少组织大量区域(直径大于200微米)净释放的[K +] o时最有效,持续时间约为数分钟。减少量可达到75%以上。在局部但长期释放的情况下,最大[K +] o升高几乎不受影响,但受中等程度升高影响的组织体积则显着减少。细胞质对K +的吸收还具有广泛释放的最大作用,但是随着释放时间的延长,其作用逐渐减弱。考虑了一定的刺激后,缓冲机制和活性神经元中K +的再摄取对确定[K +] o下降的影响。当时间间隔只有几秒钟时,再摄取不太可能是导致[K +] o下降的主要因素。评估介导空间缓冲机制的细胞(可能是神经胶质细胞)必需的属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号