首页> 美国卫生研究院文献>Chemical Science >Design and engineering of water-soluble light-harvesting protein maquettes
【2h】

Design and engineering of water-soluble light-harvesting protein maquettes

机译:水溶性集光蛋白模型的设计与工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistry of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. This partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.
机译:光合作用的自然选择设计了基于四吡咯的纳米级,光收集和光诱导电荷分离中的能量捕获。通过设计和创建纳米级的人工光收集和电荷分离蛋白,我们有机会对自然选择的局限性进行改造和克服,以将能量捕获扩展到新的波长,并定制能更好地满足人类而非细胞能量需求的高效系统。尽管将四吡咯辅助因子掺入天然蛋白质中很复杂,并且通常由辅助蛋白质辅助辅助因子的运输和插入,但人工蛋白质功能化取决于对蛋白质和驱动纳米级自组装的辅助因子的基本物理化学的实际理解。疏水和亲水四吡咯取代基的图案化和平衡对于避免天然或合成的卟啉和二氢卟酚在水性介质中聚集以及加快辅因子进入人造水溶性蛋白质的非极性核心(根据蛋白质折叠的基本第一原理设计)至关重要。 。进行这种分配后,将四吡咯定点锚定在组氨酸配体上,该组配体用于控制光能和电子转移的速率和效率,同时使至少一个极性基团朝向水相定向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号