首页> 美国卫生研究院文献>Channels >Characterization of the gating brake in the I–II loop of CaV3 T-type calcium channels
【2h】

Characterization of the gating brake in the I–II loop of CaV3 T-type calcium channels

机译:CaV3 T型钙通道的I–II回路中闸门制动器的特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Our interest was drawn to the I–II loop of CaV3 channels for two reasons: (1) transfer of the I–II loop from a high voltage-activated channel (CaV2.2) to a low voltage-activated channel (CaV3.1) unexpectedly produced an ultra-low voltage activated channel; and (2) sequence variants of the I–II loop found in childhood absence epilepsy patients altered channel gating and increased surface expression of CaV3.2 channels. To determine the roles of this loop we have studied the structure of the loop and the biophysical consequences of altering its structure. Deletions localized the gating brake to the first 62 amino acids after IS6 in all three CaV3 channels, establishing the evolutionary conservation of this region and its function. Circular dichroism was performed on a purified fragment of the I–II loop from CaV3.2 to reveal a high α-helical content. De novo computer modeling predicted the gating brake formed a helix-loop-helix structure. This model was tested by replacing the helical regions with poly-proline-glycine (PGPGPG), which introduces kinks and flexibility. These mutations had profound effects on channel gating, shifting both steady-state activation and inactivation curves, as well as accelerating channel kinetics. Mutations designed to preserve the helical structure (poly-alanine, which forms α-helices) had more modest effects. Taken together, we conclude the second helix of the gating brake establishes important contacts with the gating machinery, thereby stabilizing a closed state of T-channels, and that this interaction is disrupted by depolarization, allowing the S6 segments to spread open and Ca2+ ions to flow through.
机译:我们对CaV3通道的I–II环路感兴趣的原因有两个:(1)I–II环路从高压激活通道(CaV2.2)转移到低压激活通道(CaV3.1) )意外产生了超低压激活通道; (2)在儿童期失神癫痫患者中发现的I–II环序列变异改变了通道门控和增加了CaV3.2通道的表面表达。为了确定该环的作用,我们研究了环的结构以及改变其结构的生物物理后果。缺失将闸门制动器定位​​于所有三个CaV3通道中IS6之后的前62个氨基酸,建立了该区域及其功能的进化保守性。对来自CaV3.2的I–II环的纯化片段进行了圆二色性分析,揭示了较高的α-螺旋含量。从头开始的计算机建模预测,闸门制动器形成了螺旋-环-螺旋结构。通过用聚脯氨酸-甘氨酸(PGPGPG)取代螺旋区域来测试该模型,该模型引入了扭结和柔韧性。这些突变对通道门控,改变稳态激活和失活曲线以及加速通道动力学都有深远的影响。旨在保留螺旋结构的突变(聚丙氨酸,形成α螺旋)具有更适度的作用。综上所述,我们得出结论,闸门制动器的第二个螺旋线与闸门机械建立了重要的接触,从而稳定了T通道的闭合状态,并且这种相互作用被去极化破坏,从而使S6段散开并且Ca 2 + 离子流过。

著录项

  • 期刊名称 Channels
  • 作者

    Edward Perez-Reyes;

  • 作者单位
  • 年(卷),期 2010(4),6
  • 年度 2010
  • 页码 453–458
  • 总页数 6
  • 原文格式 PDF
  • 正文语种
  • 中图分类 分子生物学;
  • 关键词

  • 入库时间 2022-08-17 13:08:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号