首页> 美国卫生研究院文献>Cold Spring Harbor Perspectives in Biology >Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function
【2h】

Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing Neuronal Function

机译:稳态突触可塑性:稳定神经元功能的局部和全局机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural circuits must maintain stable function in the face of many plastic challenges, including changes in synapse number and strength, during learning and development. Recent work has shown that these destabilizing influences are counterbalanced by homeostatic plasticity mechanisms that act to stabilize neuronal and circuit activity. One such mechanism is synaptic scaling, which allows neurons to detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms may allow local changes in synaptic activation to generate local synaptic adaptations, and network-wide changes in activity to generate network-wide adjustments in the balance between excitation and inhibition. The signaling pathways underlying these various forms of homeostatic plasticity are currently under intense scrutiny, and although dozens of molecular pathways have now been implicated in homeostatic plasticity, a clear picture of how homeostatic feedback is structured at the molecular level has not yet emerged. On a functional level, neuronal networks likely use this complex set of regulatory mechanisms to achieve homeostasis over a wide range of temporal and spatial scales.
机译:在学习和发育过程中,神经回路必须面对许多塑性挑战,包括突触数量和强度的变化,必须保持稳定的功能。最近的工作表明,通过稳定神经元和回路活动的稳态可塑性机制可以抵消这些不稳定的影响。这样的机制是突触缩放,其允许神经元通过一组钙依赖性传感器检测其自身放电速率的变化,然后调节受体的运输以增加或减少谷氨酸受体在突触部位的积累。额外的稳态机制可能允许突触激活的局部变化产生局部突触适应,而活动范围的全网络变化产生激发和抑制之间的平衡的全网络调整。目前正在密切关注这些各种形式的稳态可塑性的信号传导途径,尽管现在已经有数十种分子途径与稳态可塑性有关,但关于分子水平的稳态反馈如何构成的清晰图景尚未出现。在功能层面上,神经网络可能会使用这种复杂的调节机制来在较大的时空范围内实现稳态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号