首页> 美国卫生研究院文献>Computational and Structural Biotechnology Journal >Detection of Side Chain Rearrangements Mediating the Motions of Transmembrane Helices in Molecular Dynamics Simulations of G Protein-Coupled Receptors
【2h】

Detection of Side Chain Rearrangements Mediating the Motions of Transmembrane Helices in Molecular Dynamics Simulations of G Protein-Coupled Receptors

机译:G蛋白偶联受体的分子动力学模拟中介导跨膜螺旋运动的侧链重排的检测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structure and dynamics are essential elements of protein function. Protein structure is constantly fluctuating and undergoing conformational changes, which are captured by molecular dynamics (MD) simulations. We introduce a computational framework that provides a compact representation of the dynamic conformational space of biomolecular simulations. This method presents a systematic approach designed to reduce the large MD simulation spatiotemporal datasets into a manageable set in order to guide our understanding of how protein mechanics emerge from side chain organization and dynamic reorganization. We focus on the detection of side chain interactions that undergo rearrangements mediating global domain motions and vice versa. Side chain rearrangements are extracted from side chain interactions that undergo well-defined abrupt and persistent changes in distance time series using Gaussian mixture models, whereas global domain motions are detected using dynamic cross-correlation. Both side chain rearrangements and global domain motions represent the dynamic components of the protein MD simulation, and are both mapped into a network where they are connected based on their degree of coupling. This method allows for the study of allosteric communication in proteins by mapping out the protein dynamics into an intramolecular network to reduce the large simulation data into a manageable set of communities composed of coupled side chain rearrangements and global domain motions. This computational framework is suitable for the study of tightly packed proteins, such as G protein-coupled receptors, and we present an application on a seven microseconds MD trajectory of CC chemokine receptor 7 (CCR7) bound to its ligand CCL21.
机译:结构和动力学是蛋白质功能的基本要素。蛋白质结构不断波动并经历构象变化,这种变化被分子动力学(MD)模拟捕获。我们引入了一个计算框架,该框架提供了生物分子模拟的动态构象空间的紧凑表示。该方法提供了一种系统的方法,旨在将大型MD模拟时空数据集简化为可管理的集合,以指导我们对蛋白质力学如何从侧链组织和动态重组中脱颖而出的理解。我们专注于检测发生重排介导全局域运动,反之亦然的侧链相互作用。使用高斯混合模型从发生明确定义的距离和时间序列突然和持续变化的侧链交互中提取侧链重排,而使用动态互相关检测全局域运动。侧链重排和全局域运动都代表蛋白质MD模拟的动态成分,并且都映射到网络中,并基于它们的耦合程度进行连接。通过将蛋白质动力学映射到分子内网络中,以将大型模拟数据还原为由耦合的侧链重排和全局域运动组成的可管理的一组社区,该方法可以研究蛋白质中的变构通讯。此计算框架适合研究紧密包装的蛋白质,例如G蛋白偶联受体,并且我们提出了CC趋化因子受体7(CCR7)与其配体CCL21结合的7微秒MD轨迹的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号