首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Bringing the Visible Universe into Focus with Robo-AO
【2h】

Bringing the Visible Universe into Focus with Robo-AO

机译:Robo-AO使可见宇宙成为焦点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best.Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images.The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.
机译:地面光学望远镜的角分辨率受到湍流大气的降解作用的限制。在没有大气的情况下,典型望远镜的角分辨率仅受衍射(即感兴趣的波长λ除以其主镜孔径D的大小)的限制。例如,哈勃太空望远镜(HST) ),并使用2.4米的主反射镜,在约0.04弧秒的可见波长处具有角分辨率。大气由温度略有不同的空气组成,因此存在不同的折射率,不断混合。光波穿过不均匀的大气时会弯曲。当地面上的望远镜聚焦这些光波时,瞬时图像显得破碎,随时间变化。结果,使用地面望远镜(即使是直径为HST的四倍的望远镜)获得的长时间曝光图像也会变得模糊不清,并且角分辨率最大约为0.5至1.5弧秒。天文自适应光学系统可以补偿这种情况。大气湍流的影响。首先,使用波前传感器对附近亮星的测量来确定入射的非平面波的形状。接着,命令光学系统中的元件,例如可变形镜,以校正入射光波的形状。进行其他校正的速率应足以跟上望远镜不断变化的气氛,最终产生衍射极限图像。波前传感器测量的保真度取决于入射光在空间和时间上的采样情况< sup> 1 。更精细的采样需要更亮的参考对象。尽管在最佳条件下,最亮的恒星可以用作对目标进行成像的参考对象,这些目标可以在几秒至数十个弧秒的距离内进行成像,但最有趣的天文目标附近没有足够亮的恒星。一种解决方案是将高功率激光束聚焦在天文目标的方向上,以创建已知形状的人造基准,也称为“激光导星”。 Robo-AO激光自适应光学系统 2,3 使用聚焦在10 km处的10W紫外激光来产生激光导星。激光导星的波前传感器测量值可驱动自适应光学校正,从而在1.5米望远镜上产生衍射极限图像,其角分辨率约为0.1弧秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号