首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation
【2h】

In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation

机译:硫族化物纤维的原位锥化用于产生中红外超连续谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment.In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm.The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16
机译:锥形硫族化物光纤中的超连续谱产生(SCG)对于加宽中红外(或中红外,大约2-20μm波长范围)频率梳 1、2 是理想的,可用于分子指纹识别等应用, 3 微量气体检测, 4 激光驱动的粒子加速, 5 和通过高次谐波产生产生X射线。 6 < / sup>在锥形光纤中实现有效的SCG,需要精确控制组速度色散(GVD)和光纤开始处的光脉冲的时间特性, 7 很大程度上取决于锥度的几何形状。 8 由于连续SCG实验的锥度设置和程序的变化(例如,光纤长度,锥度环境温度或耦合到光纤中的功率),锥度的原位光谱监控SCG是优化单个实验的输出光谱所必需的.SCG的原位纤维锥化包括政变使泵浦源通过光纤成锥形,从而到达光谱测量设备。然后光纤逐渐变细,同时实时观察光谱测量信号。当信号达到峰值时,渐细停止。原位渐缩程序可从市售近红外频率梳的次谐波中生成稳定的,跨度为八度的中红外频率梳。 9 这种方法可降低成本,因为减少制造腰部长度仅为2 mm的最佳锥度所需的时间和材料。原位锥化技术可以扩展到优化SCG 10 或调整的微结构光纤(MOF) MOF的通带, 11 为融合光纤耦合器 12 和波分复用器(WDM), 13 优化锥形光纤对或修改色散补偿用于压缩或拉伸光脉冲。 14-16

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号