首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Absolute Quantum Yield Measurement of Powder Samples
【2h】

Absolute Quantum Yield Measurement of Powder Samples

机译:粉末样品的绝对量子产率测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry.Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material.For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: class="enumerated" style="list-style-type:decimal">Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations.Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements.Reference and Sample measurement using direct excitation and indirect excitation.Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct quantum yield calculation.Corrected quantum yield calculation.Chromaticity coordinates calculation using Report Generator program.The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: class="unordered" style="list-style-type:disc">High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate.Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm.Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample.Large selection of calculated parameters provided by dedicated and easy to use software. id="__p18" class="p p-last">During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.
机译:荧光量子产率的测量已成为寻找新解决方案的重要工具,这些解决方案用于生物工业照明,视听设备,有机EL材料,薄膜,滤光片和荧光探针的开发,评估,质量控制和研究。计算为吸收的光子数与材料发射的光子数之比。量子产率越高,荧光材料的效率越好。对于本视频中的测量,我们将使用配备有量子产率测量附件和Report Generator程序的Hitachi F-7000荧光分光光度计。提供的所有信息均适用于此系统。粉末样品中量子产率的测量按照以下步骤进行: class =“ enumerated” style =“ list-style-type:decimal”> <!-list-behavior = enumerated前缀word = mark-type = decimal max-label-size = 0-> 生成用于激发和发射单色仪的仪器校正因子。这是正确测量量子产率的重要要求。由于时间限制,已经预先对仪器的整个测量范围执行了此操作。由于时间限制,该视频不会显示。 积分球校正因子的测量。此步骤的目的是考虑用于测量的积分球的反射率特性。 使用直接激发和间接激发的参考和样品测量。 使用定量激发的量子产率计算直接和间接激励。直接激发是指样品直接面对激发光束,这是正常的测量设置。但是,由于我们使用积分球,因此样品荧光产生的一部分发射光子会被积分球反射并重新激发样品,因此我们需要考虑间接激发。这是通过测量放置在面向发射单色仪的端口中的样品,计算间接量子产率并校正直接量子产率计算来实现的。 校正量子产率计算。 色度坐标计算使用报告生成器程序。 日立F-7000量子产率测量系统为该应用程序提供了优势,如下所示: class =“ unordered” style =“ list-style-type:disc”> <!-list-behavior =无序前缀词= mark-type = disc max-label-size = 0-> 高灵敏度(信噪比800或更高的RMS)。信号是在以下条件下测得的水的拉曼光谱带:Ex波长350 nm,带通Ex和Em 5 nm,响应2 sec),在拉曼峰的最大值处测量了噪声。高灵敏度甚至可以在低量子产率的情况下测量样品。使用该系统,我们测量出的水杨酸样品的量子产率低至0.1,而钨酸镁样品的量子产率高达0.8。 动态范围为6个数量级的高精度测量允许用于在相同条件下测量高强度的尖锐散射峰和低强度的宽荧光峰。 由于高达60,000 nm / min的高扫描速度和自动快门功能,可实现高测量通量并减少样品的曝光量。 在240至800 nm的宽波长范围内进行量子产率的测量。 准确的量子产率测量是在测量样品之前收集仪器光谱响应和积分球校正因子的结果 由专用且易于使用的软件提供的大量计算参数选择。 id =“ __ p18” class =“ p p-last”>在此视频中,我们将测量粉末形式的水杨酸钠,已知其量子产率为0.4到0.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号