首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >A Faster High Resolution mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy
【2h】

A Faster High Resolution mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy

机译:使用共聚焦显微镜同时获取多个细胞的动力学数据的更快高分辨率基于mtPA-GFP的线粒体融合测定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment.Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis1,2,3,13. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks4,10,13. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function18. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust14. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis9. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary.Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay7, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay1,5. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process 4,5. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment.A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP)6,11. Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal6. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE9,15. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE.The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity8,15,16,17.In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15nM TMRE8 in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.
机译:线粒体融合在线粒体钙稳态,生物能,自噬和质量控制中起着至关重要的作用。通过在线粒体子集中对基质靶向的可光激活的GFP(mtPAGFP)进行光转换,对活细胞中的融合进行定量。光转化分子在整个线粒体群体中平衡的速率用作融合活性的量度。迄今为止,使用单细胞时间推移方法进行了测量,量化了一个小时内一个细胞的平衡。在这里,我们根据使用mtPAGFP和低浓度的TMRE(15 nm)放大并自动化先前发布的活细胞方法。此方法涉及光活化线粒体网络的一小部分,每15分钟收集高度分辨的共聚焦切片堆栈,持续1小时,并量化信号强度的变化。取决于几个因素,例如查找PAGFP表达细胞的难易程度和光激活区域的信号,有可能在15分钟的间隔内收集大约10个细胞。这在保持高度解析的亚细胞定量以及捕获天然细胞结构环境中线粒体行为细节所必需的动力学参数的同时,大大提高了该测定的时间效率。线粒体动力学在包括呼吸在内的许多细胞过程中都发挥着作用,钙调节和细胞凋亡 1,2,3,13 。线粒体网络的结构影响线粒体的功能,以及它们与细胞其余部分相互作用的方式。线粒体网络经过不断的分裂和融合,从高度融合的网络到更破碎的网络,其形状各不相同。有趣的是,阿尔茨海默氏病,帕金森氏病,夏科特玛丽牙齿2A和显性视神经萎缩与线粒体形态改变有关,即碎片网络 4,10,13 。通常,线粒体在断裂时会去极化,而在积累时会导致细胞功能受损 18 。线粒体裂变已被证明可发出信号,指示细胞向凋亡方向发展。它还可以提供一种机制,通过该机制可以分离去极化和不活动的线粒体,以保持大部分网络健壮性 14 。另一方面,线粒体的融合导致基质蛋白,溶质,mtDNA和电化学梯度的共享,并且似乎还可以阻止细胞凋亡 9 。线粒体的分裂和融合如何影响细胞稳态以及最终机体的功能需要进一步了解,因此有必要不断发展和优化如何收集有关这些现象的信息。现有的线粒体融合测定法揭示了对线粒体生理学的各种见解,每个都有自己的优势。混合PEG融合测定 7 ,将两个标记不同的细胞群(mtRFP和mtYFP)混合,并分析了融合的多核细胞中荧光团的混合和共定位的量。尽管此方法产生了有价值的信息,但并非所有细胞类型都可以融合,刺激融合的条件涉及使用可能影响正常融合过程的有毒药物。最近,已开发出一种无细胞技术,该技术利用荧光素酶测定 1,5 使用分离的线粒体观察融合事件。两种人细胞系均以海肾荧光素酶的氨基或羧基末端部分以及亮氨酸拉链为靶标,以确保混合后的二聚化。从每个细胞系分离线粒体,并融合。在能量,适当温度和内部线粒体膜电位存在的情况下,在生理条件下,如果没有胞质溶胶,融合反应就会发生。有趣的是,发现胞质溶胶可调节融合程度,表明细胞信号传导调节融合过程 4,5 。该测定法对于高通量筛选非常有用,可用于识别融合机制的成分以及可能影响线粒体动力学的药理化合物。然而,需要更详细的全细胞线粒体测定来补充这种体外测定以观察细胞环境中的这些事件。基于线粒体靶向的监测全细胞线粒体动力学的技术已经使用了一段时间。光活化GFP(mtPAGFP) 6,11 。 mtPAGFP表达后,一小部分线粒体网络被光激活(10-20%),并使用延时共聚焦成像每15分钟记录一次信号向线粒体网络其余部分的传播。每个融合事件都会导致信号强度减弱,可以量化融合率。尽管融合和裂变在细胞中不断发生,但该技术仅监测融合,因为裂变不会导致PAGFP信号 6 的稀释。与低水平的TMRE(在INS1细胞中为7-15 nM)共同标记可以量化线粒体的膜电位。线粒体超极化时,它们会吸收更多的TMRE;去线粒体时,它们会失去TMRE染料。去极化的线粒体不再具有足够的膜电位,并且趋向于不能完全有效地融合。因此,可以通过这些低水平的TMRE 9,15 来跟踪主动融合线粒体。缺乏TMRE信号的去极化线粒体的积累可能是光毒性或细胞死亡的迹象。较高浓度的TMRE使线粒体对激光非常敏感,因此必须格外小心,以免TMRE过度标记。如果线粒体的去极化作用是人们关注的话题,则可以使用一种水平较高的TMRE和更强的激光以受控方式使线粒体去极化的技术(Mitra和Lippincott-Schwartz,2010年)。为确保TMRE不会造成毒性,我们建议将加载的细胞(3-15 nM TMRE)暴露于将在测定中使用的成像参数(可能是7叠,每叠6个光学切片),并进行评估2小时后细胞健康。如果线粒体看起来过于碎片化并且细胞正在死亡,则可以使用其他线粒体标记物,例如dsRED或Mitotracker red代替TMRE.mtPAGFP方法揭示了有关线粒体网络行为的细节,而其他方法则无法看到这些细节。例如,我们现在知道线粒体融合可以是完全融合也可以是瞬时融合,其中基质含量可以混合而不会改变整体网络形态。此外,我们知道融合的可能性不受接触持续时间和细胞器尺寸的影响,受细胞器运动性,膜电位和先前融合活动历史的影响 8,15,16,17 。在本文中,我们描述了一种使用mtPAGFP和15nM TMRE 8 扩大以前发布的协议的方法,以便一次检查多个单元并提高数据收集的时间效率而又不牺牲亚细胞分辨率。通过使用自动显微镜载物台和可编程图像采集软件,这已成为可能。 Zeiss的Zen软件允许用户标记和跟踪几个表达mtPAGFP的指定细胞。这些细胞中的每一个都可以在特定的目标区域中被光激活,并且可以以指定的间隔监视共焦切片堆栈中的mtPAGFP信号和TMRE。可以使用其他共聚焦系统来执行此协议,前提是存在一个可编程的自动化阶段,一个带有CO2的培养箱以及一种用于光激活PAGFP的方法;多光子激光器或405 nm二极管激光器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号