首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring
【2h】

Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

机译:为温度驱动的结构健康监测确定最小热梯度的时间周期

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.
机译:温度变化在结构的日常结构行为中起着很大的作用,但在大多数当代结构健康监测(SHM)分析中起着较小的直接作用。温度驱动SHM将温度作为SHM中的主要驱动力,将可测量的输入温度与可测量的输出广义应变(应变,曲率等)和广义位移(挠度,旋转等)相关联,以创建三维特征描述结构行为。确定最小热梯度的时间段为建立温度-变形-位移模型提供了基础。结构中的热梯度会导致多个方向的曲率,以及横截面内的非线性应变和应力分布,这会极大地使数据分析和解释复杂化,使签名失真,并可能导致关于结构行为和结构的不可靠结论。健康)状况。如果在结构中的热梯度最小时评估签名,则可以将这些不利影响降至最低。本文基于以下两个指标提出了两类方法:(i)结构上原始温度的范围,以及(ii)局部热梯度的分布,用于识别结构上具有最小热梯度的时间段。改变可接受的热梯度容差的能力。使用从普林斯顿大学校园里的Streicker桥收集的数据对方法进行了测试和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号