首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Novel Design of Grooved Fibers for Fiber-Optic Localized Plasmon Resonance Biosensors
【2h】

A Novel Design of Grooved Fibers for Fiber-Optic Localized Plasmon Resonance Biosensors

机译:光纤定位等离子体共振生物传感器槽形光纤的新型设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bio-molecular recognition is detected by the unique optical properties of self-assembled gold nanoparticles on the unclad portions of an optical fiber whose surfaces have been modified with a receptor. To enhance the performance of the sensing platform, the sensing element is integrated with a microfluidic chip to reduce sample and reagent volume, to shorten response time and analysis time, as well as to increase sensitivity. The main purpose of the present study is to design grooves on the optical fiber for the FO-LPR microfluidic chip and investigate the effect of the groove geometry on the biochemical binding kinetics through simulations. The optical fiber is designed and termed as U-type or D-type based on the shape of the grooves. The numerical results indicate that the design of the D-type fiber exhibits efficient performance on biochemical binding. The grooves designed on the optical fiber also induce chaotic advection to enhance the mixing in the microchannel. The mixing patterns indicate that D-type grooves enhance the mixing more effectively than U-type grooves. D-type fiber with six grooves is the optimum design according to the numerical results. The experimental results show that the D-type fiber could sustain larger elongation than the U-type fiber. Furthermore, this study successfully demonstrates the feasibility of fabricating the grooved optical fibers by the femtosecond laser, and making a transmission-based FO-LPR probe for chemical sensing. The sensor resolution of the sensor implementing the D-type fiber modified by gold nanoparticles was 4.1 × 10−7 RIU, which is much more sensitive than that of U-type optical fiber (1.8 × 10−3 RIU).
机译:通过分子的未包覆部分上的自组装金纳米颗粒的独特光学性质,可以检测生物分子识别,该包覆层的表面已被受体修饰。为了增强传感平台的性能,传感元件与微流体芯片集成在一起,以减少样品和试剂的体积,缩短响应时间和分析时间,并提高灵敏度。本研究的主要目的是为FO-LPR微流控芯片设计光纤上的凹槽,并通过模拟研究凹槽几何形状对生化结合动力学的影响。根据槽的形​​状,将光纤设计为U型或D型。数值结果表明,D型纤维的设计对生化结合表现出有效的性能。光纤上设计的凹槽还引起混沌对流,以增强微通道中的混合。混合模式表明,D型凹槽比U型凹槽更有效地增强了混合。根据数值结果,具有六个凹槽的D型光纤是最佳设计。实验结果表明,D型纤维比U型纤维具有更大的伸长率。此外,这项研究成功地证明了用飞秒激光器制造带槽光纤的可行性,以及制造用于化学传感的基于透射的FO-LPR探头的可行性。采用金纳米粒子修饰的D型光纤的传感器的传感器分辨率为4.1×10 −7 RIU,比U型光纤(1.8×10 −3 RIU)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号