首页> 美国卫生研究院文献>Science and Technology of Advanced Materials >Rational design of new materials for spintronics: Co2FeZ (Z=Al Ga Si Ge)
【2h】

Rational design of new materials for spintronics: Co2FeZ (Z=Al Ga Si Ge)

机译:自旋电子学新材料的合理设计:Co2FeZ(Z = AlGaSiGe)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spintronic is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of demands. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists. The development of magnetic Heusler compounds specifically designed as material for spintronic applications has made tremendous progress in the very recent past. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% in magnetic tunnel junctions. High Curie temperatures were found in Co2-based Heusler compounds with values up to 1120 K in Co2FeSi. The latest results at the time of writing are a tunnelling magnet resistance (TMR) device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a (TMR) effect higher than 200%. Good interfaces and a well-ordered compound are the precondition to realize the predicted half-metallic properties. The series Co2FeAl1- xSix is found to exhibit half-metallic ferromagnetism over a broad range, and it is shown that electron doping stabilizes the gap in the minority states for x=0.5. This might be a reason for the exceptional temperature behaviour of Co2FeAl0.5Si0.5 TMR devices. Using x-ray diffraction (XRD), it was shown conclusively that Co2FeAl crystallizes in the B2 structure whereas Co2FeSi crystallizes in the L21 structure. For the compounds Co2FeGa or Co2FeGe, with Curie temperatures expected higher than 1000 K, the standard XRD technique using laboratory sources cannot be used to easily distinguish between the two structures. For this reason, the EXAFS technique was used to elucidate the structure of these two compounds. Analysis of the data indicated that both compounds crystallize in the L21 structure which makes these two compounds suitable new candidates as materials in magnetic tunnel junctions.
机译:自旋电子学是一个多学科领域,也是一个新的研究领域。必须找到满足不同类型需求的新材料。对于固态科学家来说,寻找居里温度高于室温的稳定的半金属铁磁体和铁磁半导体仍然是一个挑战。对结构如何与特性相关的一般理解是材料设计的必要先决条件。计算模拟是合理设计新材料的重要工具。从材料科学家的角度报道了这一新领域的新发展。在最近的过去,专门设计为自旋电子应用材料的磁性Heusler化合物的开发取得了巨大的进步。 Heusler化合物可以制成半金属,在磁隧道结中表现出高达100%的高传导电子自旋极化。在基于Co2的Heusler化合物中发现居里温度很高,在Co2FeSi中的值高达1120K。撰写本文时的最新结果是由Co2FeAl0.5Si0.5 Heusler化合物制成的隧道磁阻(TMR)器件,并在室温下工作,其(TMR)效应高于200%。良好的界面和有序的化合物是实现预测的半金属性能的前提。发现Co2FeAl1-xSix系列在宽范围内表现出半金属铁磁性,并且表明在x = 0.5的情况下,电子掺杂稳定了少数状态的能隙。这可能是Co2FeAl0.5Si0.5 TMR器件具有异常温度行为的原因。使用X射线衍射(XRD)得出结论,表明Co2FeAl在B2结构中结晶,而Co2FeSi在L21结构中结晶。对于预期居里温度高于1000 K的化合物Co2FeGa或Co2FeGe,不能使用使用实验室信号源的标准XRD技术轻松区分这两种结构。因此,使用EXAFS技术来阐明这两种化合物的结构。数据分析表明,这两种化合物都在L2 1 结构中结晶,这使这两种化合物适合用作磁性隧道结中的新候选材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号