首页> 美国卫生研究院文献>RNA >Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation
【2h】

Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation

机译:通过对NMR残留偶极耦合和运动解耦的自旋弛豫的组合分析来分析RNase P P4的结构可塑性和Mg2 +结合特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The P4 helix is an essential element of ribonuclease P (RNase P) that is believed to bind catalytically important metals. Here, we applied a combination of NMR residual dipolar couplings (RDCs) and a recently introduced domain-elongation strategy for measuring “motionally decoupled” relaxation data to characterize the structural dynamics of the P4 helix from Bacillus subtilis RNase P. In the absence of divalent ions, the two P4 helical domains undergo small amplitude (~13°) collective motions about an average interhelical angle of 10°. The highly conserved U7 bulge and helical residue C8, which are proposed to be important for substrate recognition and metal binding, are locally mobile at pico- to nanosecond timescales and together form the pivot point for the collective domain motions. Chemical shift mapping reveals significant association of Mg2+ ions at the P4 major groove near the flexible pivot point at residues (A5, G22, G23) previously identified to bind catalytically important metals. The Mg2+ ions do not, however, significantly alter the structure or dynamics of P4. Analysis of results in the context of available X-ray structures of the RNA component of RNase P and structural models that include the pre-tRNA substrate suggest that the internal motions observed in P4 likely facilitate adaptive changes in conformation that take place during folding and substrate recognition, possibly aided by interactions with Mg2+ ions. Our results add to a growing view supporting the existence of functionally important internal motions in RNA occurring at nanosecond timescales.
机译:P4螺旋是核糖核酸酶P(RNase P)的必不可少的元素,被认为与催化重要的金属结合。在这里,我们结合了NMR残留偶极耦合(RDC)和最近引入的域延伸策略来测量“运动解耦”弛豫数据,以表征枯草芽孢杆菌RNase P的P4螺旋的结构动力学。离子,两个P4螺旋域在大约10°的平均螺旋间角处经历小幅度(〜13°)集体运动。高度保守的U7凸起和螺旋残基C8被认为对基底识别和金属结合很重要,它们在皮秒至纳秒级的时间范围内局部移动,共同构成了集体畴运动的枢轴点。化学位移图谱显示,在先前确定与催化重要金属结合的残基(A5,G22,G23)的柔性枢轴点附近的P4主槽处,Mg 2 + 离子显着缔合。但是,Mg 2 + 离子不会显着改变P4的结构或动力学。在RNase P RNA组分的可用X射线结构和包括pre-tRNA底物的结构模型的背景下对结果进行分析,表明在P4中观察到的内部运动可能促进折叠和底物期间构象的适应性变化与Mg 2 + 离子的相互作用可能有助于识别。我们的结果增加了人们日益增长的观点,即支持以纳秒为时标发生的RNA中功能上重要的内部运动的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号