首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Computational de novo design of a four-helix bundle protein—DND_4HB
【2h】

Computational de novo design of a four-helix bundle protein—DND_4HB

机译:四螺旋束蛋白DND_4HB的计算从头设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The de novo design of proteins is a rigorous test of our understanding of the key determinants of protein structure. The helix bundle is an interesting de novo design model system due to the diverse topologies that can be generated from a few simple α-helices. Previously, noncomputational studies demonstrated that connecting amphipathic helices together with short loops can sometimes generate helix bundle proteins, regardless of the bundle's exact sequence. However, using such methods, the precise positions of helices and side chains cannot be predetermined. Since protein function depends on exact positioning of residues, we examined if sequence design tools in the program Rosetta could be used to design a four-helix bundle with a predetermined structure. Helix position was specified using a folding procedure that constrained the design model to a defined topology, and iterative rounds of rotamer-based sequence design and backbone refinement were used to identify a low energy sequence for characterization. The designed protein, DND_4HB, unfolds cooperatively (Tm >90°C) and a NMR solution structure shows that it adopts the target helical bundle topology. Helices 2, 3, and 4 agree very closely with the design model (backbone RMSD = 1.11 Å) and >90% of the core side chain χ1 and χ2 angles are correctly predicted. Helix 1 lies in the target groove against the other helices, but is displaced 3 Å along the bundle axis. This result highlights the potential of computational design to create bundles with atomic-level precision, but also points at remaining challenges for achieving specific positioning between amphipathic helices.
机译:蛋白质的从头设计是对我们对蛋白质结构关键决定因素的理解的严格检验。螺旋束是一个有趣的从头设计模型系统,因为可以从几个简单的α螺旋生成多种拓扑。以前,非计算研究表明,将两亲性螺旋与短环连接在一起有时会生成螺旋束蛋白,而不论束的确切序列如何。然而,使用这种方法,无法预先确定螺旋和侧链的精确位置。由于蛋白质功能取决于残基的精确定位,因此我们检查了Rosetta程序中的序列设计工具是否可用于设计具有预定结构的四螺旋束。使用折叠程序指定了螺旋位置,该折叠程序将设计模型限制为已定义的拓扑,并且基于rotamer的序列设计和主干优化的迭代轮次用于识别低能序列以进行表征。设计的蛋白质DND_4HB协同展开(Tm> 90°C),NMR溶液结构表明它采用了目标螺旋束拓扑。螺旋2、3和4与设计模型非常吻合(主干RMSD = 1.11Å),并且正确预测了90%以上的核心侧链χ1和χ2角。螺旋线1位于目标凹槽中,与其他螺旋线相对,但沿束轴偏移3Å。该结果突出了计算设计产生具有原子级精度的束的潜力,同时也指出了在实现两亲性螺旋之间的特定定位方面仍然存在的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号