首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics
【2h】

Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

机译:通过晶体学数据限制的整体MD模拟:精确的结构导致精确的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields.
机译:当前,现有的最佳分子动力学(MD)力场无法准确地再现实现实验蛋白结构的全球自由能最小值。结果,长的MD轨迹趋向于偏离起始坐标(例如,晶体学结构)。为了解决这个问题,我们设计了一种针对蛋白质晶体的新模拟策略。蛋白质晶体的MD模拟本质上是一个整体模拟,涉及晶体晶胞(或单位晶胞块)中的多个蛋白质分子。为了确保模拟过程中平均蛋白质坐标保持正确,我们在MD协议中引入了基于晶体学的约束。因为这些限制是针对总体平均结构的,所以它们对单个蛋白质分子的构象动力学影响很小。只要平均结构保持合理,蛋白质就会按照原始力场的指示以天然方式运动。为了验证这种方法,我们使用了固态NMR光谱数据,这是对蛋白质局部动力学唯一敏感的正交实验技术。新方法已经在公认的模型蛋白泛素上进行了测试。集成约束的MD模拟产生的结晶R因子低于常规模拟。他们还导致对晶体温度因子,固态化学位移和主链有序参数的更准确预测。 15 N R1弛豫率的预测至少与从常规模拟中获得的预测一样准确。综上所述,这些结果表明,所提出的轨迹可能是有史以来最真实的蛋白质MD模拟。在这种情况下,基于高分辨率晶体学数据的合奏约束可以看作是对标准力场的蛋白质特定的经验校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号