首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor
【2h】

Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor

机译:配体结合模块的圆形排列提高了基于遗传编码的基于FRET的纳米传感器的动态范围

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantitative measurement of small molecules with high spatiotemporal resolution provides a solid basis for correct understanding and accurate modeling of metabolic regulation. A promising approach toward this goal is the FLIP (fluorescent indicator protein) nanosensor based on bacterial periplasmic binding proteins (PBPs) and fluorescence resonance energy transfer (FRET) between the yellow and cyan variants of green fluorescent protein (GFP). Each FLIP has a PBP module that specifically binds its ligand to induce a conformation change, leading to a change in FRET between the two GFP variant modules attached to the N- and C-termini of the PBP. The larger is the dynamic range the more reliable is the measurement. Thus, we attempted to expand the dynamic range of FLIP by introducing a circular permutation with a hinge loop deletion to the PBP module. All the six circularly permutated PBPs tested, including structurally distinct Type I and Type II PBPs, showed larger dynamic ranges than their respective native forms when used for FLIP. Notably, the circular permutation made three PBPs, which totally failed to show FRET change when used as their native forms, fully capable of functioning as a ligand binding module of FLIP. These FLIPs were successfully used for the determination of amino acid concentration in complex solutions as well as real-time measurement of amino acid influx in living yeast cells. Thus, the circular permutation strategy would not only improve the performance of each nanosensor but also expand the repertoire of metabolites that can be measured by the FLIP nanosensor technology.
机译:具有高时空分辨率的小分子的定量测量为正确理解和精确调节代谢调控提供了坚实的基础。实现此目标的一种有前途的方法是基于细菌周质结合蛋白(PBP)和绿色荧光蛋白(GFP)的黄色和青色变体之间的荧光共振能量转移(FRET)的FLIP(荧光指示剂)纳米传感器。每个FLIP都有一个PBP模块,该模块特异性结合其配体以诱导构象变化,从而导致连接到PBP N和C末端的两个GFP变异模块之间的FRET发生变化。动态范围越大,测量越可靠。因此,我们尝试通过向PBP模块引入带有铰链环缺失的圆形置换来扩展FLIP的动态范围。当用于FLIP时,所有六个循环排列的PBP,包括结构上不同的I型和II型PBP,都显示出比其各自的自然形式更大的动态范围。值得注意的是,圆形排列产生了三个PBP,当以其天然形式使用时,完全无法显示FRET变化,完全能够充当FLIP的配体结合模块。这些FLIP成功地用于测定复杂溶液中的氨基酸浓度,以及实时测量活酵母细胞中的氨基酸流入量。因此,循环置换策略不仅可以提高每个纳米传感器的性能,而且可以扩展可以通过FLIP纳米传感器技术测量的代谢产物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号