首页> 美国卫生研究院文献>Proceedings of the Japan Academy. Series B Physical and Biological Sciences >Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR
【2h】

Folding of apomyoglobin: Analysis of transient intermediate structure during refolding using quick hydrogen deuterium exchange and NMR

机译:apglooglobin的折叠:使用快速氢氘交换和NMR分析重折叠过程中的瞬时中间结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The structures of apomyoglobin folding intermediates have been widely analyzed using physical chemistry methods including fluorescence, circular dichroism, small angle X-ray scattering, NMR, mass spectrometry, and rapid mixing. So far, at least two intermediates (on sub-millisecond- and millisecond-scales) have been demonstrated for apomyoglobin folding. The combination of pH-pulse labeling and NMR is a useful tool for analyzing the kinetic intermediates at the atomic level. Its use has revealed that the latter-phase kinetic intermediate of apomyoglobin (6 ms) was composed of helices A, B, G and H, whereas the equilibrium intermediate, called the pH 4 molten-globule intermediate, was composed mainly of helices A, G and H. The improved strategy for the analysis of the kinetic intermediate was developed to include (1) the dimethyl sulfoxide method, (2) data processing with the various labeling times, and (3) a new in-house mixer. Particularly, the rapid mixing revealed that helices A and G were significantly more protected at the earlier stage (400 µs) of the intermediate (former-phase intermediate) than the other helices. Mutation studies, where each hydrophobic residue was replaced with an alanine in helices A, B, E, F, G and H, indicated that both non-native and native-like structures exist in the latter-phase folding intermediate. The N-terminal part of helix B is a weak point in the intermediate, and the docking of helix E residues to the core of the A, B, G and H helices was interrupted by a premature helix B, resulting in the accumulation of the intermediate composed of helices A, B, G and H. The prediction-based protein engineering produced important mutants: Helix F in a P88K/A90L/S92K/A94L mutant folded in the latter-phase intermediate, although helix F in the wild type does not fold even at the native state. Furthermore, in the L11G/W14G/A70L/G73W mutant, helix A did not fold but helix E did, which is similar to what was observed in the kinetic intermediate of apoleghemoglobin. Thus, this protein engineering resulted in a changed structure for the apomyoglobin folding intermediate.
机译:使用物理化学方法,包括荧光,圆二色性,小角X射线散射,NMR,质谱和快速混合,已经广泛地分析了磷霉素红蛋白折叠中间体的结构。到目前为止,至少有两个中间体(亚毫秒级和毫秒级)已被证明可引起肌红蛋白折叠。 pH脉冲标记和NMR的组合是用于分析原子级动力学中间体的有用工具。它的使用表明,磷肌红蛋白的后期动力学中间体(6毫秒)由螺旋A,B,G和H组成,而称为pH 4熔融球中间体的平衡中间体则主要由螺旋A组成, G和H。开发了用于动力学中间体分析的改进策略,包括(1)二甲基亚砜方法,(2)具有不同标记时间的数据处理以及(3)新的室内混合器。尤其是,快速混合显示,在中间体(前相中间体)的早期阶段(400 µs),螺旋A和G受到的保护比其他螺旋明显更好。突变研究表明,在螺旋A,B,E,F,G和H中每个疏水残基都被丙氨酸取代,这表明在后期折叠中间体中既存在非天然结构,又存在天然结构。螺旋B的N端部分是中间的一个弱点,并且螺旋E残基对接至A,B,G和H螺旋的核心被早熟的螺旋B中断,导致基于螺旋的中间体,由螺旋A,B,G和H组成。基于预测的蛋白质工程产生了重要的突变体:P88K / A90L / S92K / A94L突变体中的螺旋F在后期中间体中折叠,尽管野生型螺旋F确实存在即使在原始状态下也不会折叠。此外,在L11G / W14G / A70L / G73W突变体中,螺旋A没有折叠,但是螺旋E折叠了,这类似于在脱铁血红蛋白的动力学中间体中观察到的相似。因此,这种蛋白质工程导致apglooglobin折叠中间体的结构发生了变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号