首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Rapid shift and millennial-scale variations in Holocene North Pacific Intermediate Water ventilation
【2h】

Rapid shift and millennial-scale variations in Holocene North Pacific Intermediate Water ventilation

机译:全新世北太平洋中间水通风的快速变化和千禧尺度的变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Pacific hosts the largest oxygen minimum zones (OMZs) in the world ocean, which are thought to intensify and expand under future climate change, with significant consequences for marine ecosystems, biogeochemical cycles, and fisheries. At present, no deep ventilation occurs in the North Pacific due to a persistent halocline, but relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development in lower latitudes. Over the past decades, instrumental data show decreasing oxygenation in NPIW; however, long-term variations in middepth ventilation are potentially large, obscuring anthropogenic influences against millennial-scale natural background shifts. Here, we use paleoceanographic proxy evidence from the Okhotsk Sea, the foremost North Pacific ventilation region, to show that its modern oxygenated pattern is a relatively recent feature, with little to no ventilation before six thousand years ago, constituting an apparent Early–Middle Holocene (EMH) threshold or “tipping point.” Complementary paleomodeling results likewise indicate a warmer, saltier EMH NPIW, different from its modern conditions. During the EMH, the Okhotsk Sea switched from a modern oxygenation source to a sink, through a combination of sea ice loss, higher water temperatures, and remineralization rates, inhibiting ventilation. We estimate a strongly decreased EMH NPIW oxygenation of ∼30 to 50%, and increased middepth Pacific nutrient concentrations and carbon storage. Our results (i) imply that under past or future warmer-than-present conditions, oceanic biogeochemical feedback mechanisms may change or even switch direction, and (ii) provide constraints on the high-latitude North Pacific’s influence on mesopelagic ventilation dynamics, with consequences for large oceanic regions.
机译:太平洋拥有世界海洋中最大的最小氧气区(OMZ),人们认为它们会随着未来的气候变化而加剧和扩大,这对海洋生态系统,生物地球化学循环和渔业将产生重大影响。目前,由于持续不断的盐环作用,北太平洋没有发生深层通风,但是相对较富氧的地下北太平洋中间水(NPIW)减轻了低纬度地区OMZ的发展。在过去的几十年中,仪器数据显示NPIW中的氧合作用减少。然而,中深层通风的长期变化可能很大,从而掩盖了人为因素对千禧一代自然本底变化的影响。在这里,我们使用鄂霍次克海(北太平洋最重要的通风区域)的古海洋学代理证据表明,其现代的氧化模式是一个相对较新的特征,在六千年前几乎没有通风,这是一个明显的早中新世。 (EMH)阈值或“临界点”。补充的古模拟结果同样表明,EMH NPIW较现代条件更温暖,更咸。在EMH期间,鄂霍次克海通过海冰流失,较高的水温和再矿化率的结合,从现代的氧化源转变为水槽,从而阻碍了通风。我们估计EMH NPIW的氧合强烈降低了约30%至50%,并且增加了中深度太平洋营养物浓度和碳储量。我们的结果(i)暗示在过去或将来比现在暖和的条件下,海洋生物地球化学反馈机制可能会改变甚至改变方向,并且(ii)限制了高纬度北太平洋对近地层通风动力学的影响,并带来了后果适用于大洋洲地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号