首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Escherichia coli cultures maintain stable subpopulation structure during long-term evolution
【2h】

PNAS Plus: Escherichia coli cultures maintain stable subpopulation structure during long-term evolution

机译:PNAS Plus:大肠杆菌培养物在长期进化过程中保持稳定的亚群结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

How genetic variation is generated and maintained remains a central question in evolutionary biology. When presented with a complex environment, microbes can take advantage of genetic variation to exploit new niches. Here we present a massively parallel experiment where WT and repair-deficient (∆mutL) Escherichia coli populations have evolved over 3 y in a spatially heterogeneous and nutritionally complex environment. Metagenomic sequencing revealed that these initially isogenic populations evolved and maintained stable subpopulation structure in just 10 mL of medium for up to 10,000 generations, consisting of up to five major haplotypes with many minor haplotypes. We characterized the genomic, transcriptomic, exometabolomic, and phenotypic differences between clonal isolates, revealing subpopulation structure driven primarily by spatial segregation followed by differential utilization of nutrients. In addition to genes regulating the import and catabolism of nutrients, major polymorphisms of note included insertion elements transposing into fimE (regulator of the type I fimbriae) and upstream of hns (global regulator of environmental-change and stress-response genes), both known to regulate biofilm formation. Interestingly, these genes have also been identified as critical to colonization in uropathogenic E. coli infections. Our findings illustrate the complexity that can arise and persist even in small cultures, raising the possibility that infections may often be promoted by an evolving and complex pathogen population.
机译:如何产生和维持遗传变异仍然是进化生物学的中心问题。当环境复杂时,微生物可以利用遗传变异来利用新的生态位。在这里,我们提出了一个大规模的并行实验,其中在空间异质且营养复杂的环境中,野生型和修复缺陷型(∆mutL)大肠杆菌种群进化了3年多。元基因组测序显示,这些最初的同基因种群仅在10 mL培养基中即可进化并保持稳定的亚群结构,最多可生成10,000代,其中包括多达五种主要单倍型和许多次要单倍型。我们表征了克隆分离物之间的基因组,转录组学,外生代谢组学和表型差异,揭示了主要由空间隔离和营养物质差异利用驱动的亚群结构。除了调节营养物质的导入和分解代谢的基因外,主要的多态性还包括插入元件,它们分别转入fimE(I型菌毛的调节剂)和hns(环境变化和应激反应基因的全球调节剂)的上游。调节生物膜的形成。有趣的是,这些基因也已被证明对尿路致病性大肠杆菌感染中的定殖至关重要。我们的发现表明,即使在很小的文化中,也可能出现并持续存在复杂性,这增加了不断发展的复杂病原体种群可能促进感染的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号