首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution
【2h】

PNAS Plus: Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution

机译:PNAS Plus:通过基因组挖掘在十字花科发现一种酯基戊二烯生物合成库

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sesterterpenoids are a rare terpene class harboring untapped chemodiversity and bioactivities. Their structural diversity originates primarily from the scaffold-generating sesterterpene synthases (STSs). In fungi, all six known STSs are bifunctional, containing C-terminal trans-prenyltransferase (PT) and N-terminal terpene synthase (TPS) domains. In plants, two colocalized PT and TPS gene pairs from Arabidopsis thaliana were recently reported to synthesize sesterterpenes. However, the landscape of PT and TPS genes in plant genomes is unclear. Here, using a customized algorithm for systematically searching plant genomes, we reveal a suite of physically colocalized pairs of PT and TPS genes for the biosynthesis of a large sesterterpene repertoire in the wider Brassicaceae. Transient expression of seven TPSs from A. thaliana, Capsella rubella, and Brassica oleracea in Nicotiana benthamiana yielded fungal-type sesterterpenes with tri-, tetra-, and pentacyclic scaffolds, and notably (−)-ent-quiannulatene, an enantiomer of the fungal metabolite (+)-quiannulatene. Protein and structural modeling analysis identified an amino acid site implicated in structural diversification. Mutation of this site in one STS (AtTPS19) resulted in premature termination of carbocation intermediates and accumulation of bi-, tri-, and tetracyclic sesterterpenes, revealing the cyclization path for the pentacyclic sesterterpene (−)-retigeranin B. These structural and mechanistic insights, together with phylogenetic analysis, suggest convergent evolution of plant and fungal STSs, and also indicate that the colocalized PT–TPS gene pairs in the Brassicaceae may have originated from a common ancestral gene pair present before speciation. Our findings further provide opportunities for rapid discovery and production of sesterterpenes through metabolic and protein engineering.
机译:酯类萜是一种罕见的萜类,具有未开发的化学多样性和生物活性。它们的结构多样性主要来自产生支架的酯基萜烯合酶(STS)。在真菌中,所有六个已知的STS都是双功能的,包含C末端反戊烯基转移酶(PT)和N末端萜烯合酶(TPS)域。在植物中,最近报道了来自拟南芥的两个共定位的PT和TPS基因对合成了酯类萜。但是,尚不清楚植物基因组中PT和TPS基因的情况。在这里,使用定制的算法来系统地搜索植物基因组,我们揭示了一组在物理上共定位的PT和TPS基因对,用于在更宽的十字花科中合成大型的esterterpene曲目。在烟草本氏菌中瞬时表达拟南芥,荚膜小rub菜和芸苔属的7种TPS产生具有三环,四环和五环骨架的真菌型酯基萜烯,尤其是(-)-对-喹咯烷酮,一种真菌的对映体。代谢物(+)-喹啉。蛋白质和结构建模分析确定了与结构多样化有关的氨基酸位点。该位点在一个STS(AtTPS19)中的突变导致碳正离子中间体的过早终止以及双环,三环和四环酯基酯的积累,从而揭示了五环酯基(-)-tigerananin B的环化路径。这些结构和机理的见解结合系统发育分析,表明植物和真菌STS的趋同进化,也表明十字花科的共定位PT-TPS基因对可能起源于物种形成之前存在的共同祖先基因对。我们的发现进一步为通过代谢和蛋白质工程技术快速发现和生产酯基萜烯提供了机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号