首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models
【2h】

PNAS Plus: Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models

机译:PNAS Plus:使用密度泛函理论和传输模型对Ag上电化学还原CO2的机理的见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrochemical reduction of CO2 using renewable sources of electrical energy holds promise for converting CO2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction. Moreover, cathode polarization can influence the kinetics of CO2 reduction. Here, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO2 that is consistent with experiments. Simulations based on this mechanism also describe the dependence of the H2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.
机译:使用可再生电能进行电化学还原二氧化碳有望将二氧化碳转化为燃料和化学物质。由于此过程很复杂并且涉及大量的物种和物理现象,因此需要对控制产品分布的因素有一个全面的了解。虽然最合理的反应途径通常是通过最低自由能途径的量子化学计算确定的,但是当为替代机理确定的吸附物质的覆盖率差异显着时,这种方法可能会产生误导,因为基本反应速率取决于速率的乘积系数和参与反应的物种的覆盖率。此外,阴极极化会影响CO2还原的动力学。在这里,我们为从头开始模拟在Ag(110)表面上电化学还原CO2的多尺度框架。物种迁移的连续模型与阴极动力学的微观动力学模型相结合。根据密度泛函理论计算确定所有基本反应的活化自由能。使用这种方法,研究了三种减少二氧化碳排放的替代机制。每种机理中的限速步骤是在较高的负电势下形成** COOH。但是,只有通过多尺度模拟才能确定导致CO生成速率对CO2分压的依赖性的机理,这与实验一致。基于这种机制的模拟还描述了H2和CO电流密度对阴极电压的依赖性,这与实验观察结果非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号