首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion
【2h】

Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion

机译:大电导机械敏感通道在扩展过程中的多个结构要素的机械耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The prokaryotic mechanosensitive channel of large conductance (MscL) is a pressure-relief valve protecting the cell from lysing during acute osmotic downshock. When the membrane is stretched, MscL responds to the increase of membrane tension and opens a nonselective pore to about 30 Å wide, exhibiting a large unitary conductance of ∼3 nS. A fundamental step toward understanding the gating mechanism of MscL is to decipher the molecular details of the conformational changes accompanying channel opening. By applying fusion-protein strategy and controlling detergent composition, we have solved the structures of an archaeal MscL homolog from Methanosarcina acetivorans trapped in the closed and expanded intermediate states. The comparative analysis of these two new structures reveals significant conformational rearrangements in the different domains of MscL. The large changes observed in the tilt angles of the two transmembrane helices (TM1 and TM2) fit well with the helix-pivoting model derived from the earlier geometric analyses based on the previous structures. Meanwhile, the periplasmic loop region transforms from a folded structure, containing an ω-shaped loop and a short β-hairpin, to an extended and partly disordered conformation during channel expansion. Moreover, a significant rotating and sliding of the N-terminal helix (N-helix) is coupled to the tilting movements of TM1 and TM2. The dynamic relationships between the N-helix and TM1/TM2 suggest that the N-helix serves as a membrane-anchored stopper that limits the tilts of TM1 and TM2 in the gating process. These results provide direct mechanistic insights into the highly coordinated movement of the different domains of the MscL channel when it expands.
机译:大电导的原核机械敏感通道(MscL)是一个减压阀,可保护细胞在急性渗透性下降休克期间不致溶解。当膜被拉伸时,MscL响应膜张力的增加,并打开一个非选择性孔至约30Å宽,表现出约3 nS的大单位电导。理解MscL的门控机制的基本步骤是破译伴随通道开放的构象变化的分子细节。通过应用融合蛋白策略和控制去污剂组成,我们已经解决了来自甲基甲烷八叠球菌的古细菌MscL同源物的结构,该结构被困在闭合和扩展的中间状态。对这两个新结构的比较分析表明,在MscL的不同域中构象重排显着。在两个跨膜螺旋(TM1和TM2)的倾斜角中观察到的大变化与基于先前结构的早期几何分析得出的螺旋旋转模型非常吻合。同时,周质环区域从包含ω形环和短β-发夹的折叠结构转变为通道扩展过程中的延伸且部分无序的构象。此外,N末端螺旋(N螺旋)的显着旋转和滑动与TM1和TM2的倾斜运动有关。 N螺旋和TM1 / TM2之间的动态关系表明,N螺旋用作膜锚定的塞子,限制了门控过程中TM1和TM2的倾斜。这些结果为MscL通道扩展时各个域的高度协调运动提供了直接的机械见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号