首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae
【2h】

PNAS Plus: Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae

机译:PNAS Plus:果蝇飞行通过用触角感应风来稳定其基于视觉的速度控制器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.
机译:苍蝇和其他昆虫利用视觉调节飞行中的地面速度,从而使它们能够在变化的风力条件下飞行。但是,与机械感测模式相比,视觉需要较长的处理延迟(〜100 ms),如果以高增益操作可能会导致不稳定。苍蝇还可以通过触角感知空气运动,但是如何在飞行控制中使用它尚不清楚。我们通过消灭果蝇的果蝇操纵天线的触角功能,迫使它们仅依靠视觉调节地速。在飞行中,经过Arista消融的果蝇的地面速度变异性比完整果蝇大得多。然后,我们对它们进行了一系列控制的冲动阵风,这些阵风由空气活塞提供,并通过实验操作触角和视觉反馈。结果表明,天线介导的响应改变了机翼的运动,导致苍蝇在与阵风相同的方向上加速。该响应与逆风飞行相反,但果蝇定期向逆风飞行。为了解决这种差异,我们通过将候选模型的参数拟合到我们的实验数据中,获得了苍蝇速度调节器的动态模型。该模型表明,阿里斯塔消融的苍蝇的地面速度变化是由于视觉反馈的延迟和高增益导致的不稳定反馈振荡的结果。天线响应以较短的延迟(〜20 ms)来驱动有源阻尼,以稳定该调节器,以换来增加快速风扰的影响。这提供了对苍蝇多模态感官反馈架构的洞察力,并构成了触角以前未知的角色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号