【2h】

Compensatory escape mechanism at low Reynolds number

机译:低雷诺数下的补偿逃逸机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation.
机译:尽管捕食压力很高,但浮游性pe足类动物仍然是地球上最丰富的种群之一。它们的逃避反应提供了使进化适应度最大化的最有效机制之一。与捕食者(> 1毫米)相比,它们的体积小(100微米),因此,粘度的增加对co足类在低温下的适应性具有有害影响。使用高速数字全息技术,我们获得了无节幼体逃逸的3D运动学信息,包括位置和详细的肢体运动。通过独立地改变温度和粘度,我们证明了在自然极端温度下,与传统观点相反,无节幼体在保持最佳速度的同时获得了等效的逃逸距离。使用来自阻力理论推进模型的实验结果和运动学模拟,我们证明了肢体正时的变化会导致动力冲程持续时间相对于恢复冲程持续时间的增加。这种变化使无节幼体可以限制速度损失,并在逃逸过程中将距离保持在其自然热范围的下限。发现动力冲程持续时间相对于恢复冲程持续时间的变化是由游泳附肢肌肉群的温度依赖性调节的,而不是对粘度变化的动态响应所调节的。这些结果表明,pe足类无节幼体具有自然的适应性机制来补偿粘度随温度的变化,但在粘度不依赖于温度变化的情况下(如浮游植物的大量开花)则没有。了解环境变化(例如温度和粘度)后逃逸的稳健性,对评估性能补偿的未来健康状况有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号