首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms
【2h】

High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms

机译:疟疾寄生虫的高速全息显微术揭示了灵巧的鞭毛波形

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Axonemes form the core of eukaryotic flagella and cilia, performing tasks ranging from transporting fluid in developing embryos to the propulsion of sperm. Despite their abundance across the eukaryotic domain, the mechanisms that regulate the beating action of axonemes remain unknown. The flagellar waveforms are 3D in general, but current understanding of how axoneme components interact stems from 2D data; comprehensive measurements of flagellar shape are beyond conventional microscopy. Moreover, current flagellar model systems (e.g., sea urchin, human sperm) contain accessory structures that impose mechanical constraints on movement, obscuring the “native” axoneme behavior. We address both problems by developing a high-speed holographic imaging scheme and applying it to the (male) microgametes of malaria (Plasmodium) parasites. These isolated flagella are a unique, mathematically tractable model system for the physics of microswimmers. We reveal the 3D flagellar waveforms of these microorganisms and map the differential shear between microtubules in their axonemes. Furthermore, we overturn claims that chirality in the structure of the axoneme governs the beat pattern [Hirokawa N, et al. (2009) Ann Rev Fluid Mech 41:53–72], because microgametes display a left- or right-handed character on alternate beats. This breaks the link between structural chirality in the axoneme and larger scale symmetry breaking (e.g., in developing embryos), leading us to conclude that accessory structures play a critical role in shaping the flagellar beat.
机译:轴突形成真核鞭毛和纤毛的核心,执行的任务范围从运送正在发育的胚胎中的液体到推动精子。尽管它们在整个真核域中丰富,但调节轴突搏动作用的机制仍然未知。鞭毛波形一般是3D的,但目前对轴突成分相互作用的了解源于2D数据。鞭毛形状的全面测量超出了常规显微镜的范围。此外,当前的鞭毛模型系统(例如,海胆,人类精子)包含对运动施加机械约束的辅助结构,从而掩盖了“天然”轴突的行为。我们通过开发高速全息成像方案并将其应用于疟疾(疟原虫)寄生虫的(男性)微型配子来解决这两个问题。这些孤立的鞭毛是微游泳者物理学的独特的,数学上易处理的模型系统。我们揭示了这些微生物的3D鞭毛波形,并在它们的轴突中绘制了微管之间的差异剪切。此外,我们推翻了轴突结构的手性决定了搏动模式的研究[Hirokawa N等。 (2009)Ann Rev Fluid Mech 41:53–72],因为微配子在交替节拍上显示左手或右手角色。这打破了轴突中的结构手性与大规模对称性断裂(例如在发育中的胚胎中)之间的联系,使我们得出结论,附属结构在鞭毛节律的形成中起关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号