首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Myosin IC generates power over a range of loads via a new tension-sensing mechanism
【2h】

PNAS Plus: Myosin IC generates power over a range of loads via a new tension-sensing mechanism

机译:PNAS Plus:Myosin IC通过新的张力感应机制在各种负载下发电

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Myosin IC (myo1c), a widely expressed motor protein that links the actin cytoskeleton to cell membranes, has been associated with numerous cellular processes, including insulin-stimulated transport of GLUT4, mechanosensation in sensory hair cells, endocytosis, transcription of DNA in the nucleus, exocytosis, and membrane trafficking. The molecular role of myo1c in these processes has not been defined, so to better understand myo1c function, we utilized ensemble kinetic and single-molecule techniques to probe myo1c’s biochemical and mechanical properties. Utilizing a myo1c construct containing the motor and regulatory domains, we found the force dependence of the actin-attachment lifetime to have two distinct regimes: a force-independent regime at forces < 1 pN, and a highly force-dependent regime at higher loads. In this force-dependent regime, forces that resist the working stroke increase the actin-attachment lifetime. Unexpectedly, the primary force-sensitive transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins. This force-sensing behavior is unique amongst characterized myosins and clearly demonstrates mechanochemical diversity within the myosin family. Based on these results, we propose that myo1c functions as a slow transporter rather than a tension-sensitive anchor.
机译:肌球蛋白IC(myo1c)是一种广泛表达的将肌动蛋白细胞骨架与细胞膜连接的运动蛋白,与许多细胞过程有关,包括胰岛素刺激的GLUT4转运,感觉毛细胞的机械感觉,内吞作用,细胞核中DNA的转录,胞吐作用和膜运输。尚未确定myo1c在这些过程中的分子作用,因此,为了更好地了解myo1c的功能,我们使用了集成动力学和单分子技术来探查myo1c的生化和机械性质。利用包含运动和调节域的myo1c构建体,我们发现肌动蛋白附着寿命的力依赖性具有两种不同的机制:力小于1 pN的力非依赖性机制和更高负载下的高度力依赖性机制。在这种依赖于力的状态下,抵抗工作行程的力会延长肌动蛋白附着的寿命。出乎意料的是,主要的力敏感转变是ATP结合后的异构化,而不是其他慢肌球蛋白中的ADP释放。这种力觉行为在特征性的肌球蛋白中是独特的,并且清楚地证明了肌球蛋白家族内的机械化学多样性。基于这些结果,我们建议myo1c充当缓慢的转运蛋白,而不是对张力敏感的锚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号