...
首页> 外文期刊>The Journal of biological chemistry >FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V
【24h】

FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V

机译:FRET和光学诱捕肌动蛋白激活电力冲程和磷酸盐释放的机制肌瘤v

获取原文
           

摘要

Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre– and post–power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.
机译:肌球蛋白通过精确协调其机械和化学循环来产生力量和运动,但这种协调的性质和时间仍然存在争议。我们利用了一种摩擦方法来检查肌球蛋白V中的力产生杠杆臂的结构变化的动力学。我们直接将FRET结果与光学俘获检查的单分子机械事件进行比较。我们在活性位点的保守开关I区域引入了一个突变(S217A),以检查肌球蛋白如何耦合肌动蛋白和核苷酸结合区域的结构变化,其具有力产生。具体地,S217A增强了杠杆臂灌注(恢复行程)的最大速率,同时减慢了ATP水解,证明了这两个步骤的汇率。我们确定突变显着减缓搭配杆臂(动力行程)和磷酸盐释放(≥10倍)的肌动蛋白诱导的旋转,而我们的模拟表明,两个步骤的最高速率由突变不变。时间分辨的褶皱显示,突变没有改变这些构象的前功率行程构象和摩尔级分的结构。光学诱捕结果表明,S217A不显着改变整体位移或慢速工作行程率恒定,这与突变在电力行程之前破坏肌动蛋白诱导的构象变化。我们提出肌动蛋白和核苷酸结合区域之间的沟通确保了适当的肌动蛋白结合界面和在产生动力行程之前形成的活性位点。该偶联中的可变性可能对于介导基于电机的功能,例如肌肉收缩和细胞内运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号