首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves
【2h】

Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves

机译:氧气进化动力学和光伏功率曲线在人工叶片构造上的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An artificial leaf can perform direct solar-to-fuels conversion. The construction of an efficient artificial leaf or other photovoltaic (PV)-photoelectrochemical device requires that the power curve of the PV material and load curve of water splitting, composed of the catalyst Tafel behavior and cell resistances, be well-matched near the thermodynamic potential for water splitting. For such a condition, we show here that the current density-voltage characteristic of the catalyst is a key determinant of the solar-to-fuels efficiency (SFE). Oxidic Co and Ni borate (Co-Bi and Ni-Bi) thin films electrodeposited from solution yield oxygen-evolving catalysts with Tafel slopes of 52 mV/decade and 30 mV/decade, respectively. The consequence of the disparate Tafel behavior on the SFE is modeled using the idealized behavior of a triple-junction Si PV cell. For PV cells exhibiting similar solar power-conversion efficiencies, those displaying low open circuit voltages are better matched to catalysts with low Tafel slopes and high exchange current densities. In contrast, PV cells possessing high open circuit voltages are largely insensitive to the catalyst’s current density-voltage characteristics but sacrifice overall SFE because of less efficient utilization of the solar spectrum. The analysis presented herein highlights the importance of matching the electrochemical load of water-splitting to the onset of maximum current of the PV component, drawing a clear link between the kinetic profile of the water-splitting catalyst and the SFE efficiency of devices such as the artificial leaf.
机译:人造叶可以直接进行太阳能到燃料的转换。有效的人工叶片或其他光伏(PV)-光电化学装置的构造要求由催化剂Tafel行为和电池电阻组成的PV材料的功率曲线和水分解的负荷曲线在热力学势附近要很好地匹配用于水分解。对于这种情况,我们在这里表明催化剂的电流密度-电压特性是决定太阳能转化效率(SFE)的关键因素。从溶液中电沉积的氧化Co和硼酸Ni(Co-Bi和Ni-Bi)薄膜产生的放氧催化剂的Tafel斜率分别为52 mV /十倍和30 mV /十倍。使用三结Si PV电池的理想化行为对SFE上不同的Tafel行为的结果进行建模。对于表现出相似的太阳能转换效率的PV电池,具有低开路电压的PV电池更适合与具有低Tafel斜率和高交换电流密度的催化剂匹配。相反,具有高开路电压的PV电池对催化剂的电流密度-电压特性不敏感,但由于对太阳光谱的利用效率较低,因此牺牲了整体SFE。本文介绍的分析突出显示了将水分解的电化学负荷与PV组件最大电流的开始相匹配的重要性,并在水分解催化剂的动力学特性与诸如SFC等装置的SFE效率之间建立了清晰的联系。人造叶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号