首页> 外文学位 >Low Power Analog to Digital Conversion using Time Interleaved Passive Sigma Delta Modulators Powered by Integrated Photovoltaics.
【24h】

Low Power Analog to Digital Conversion using Time Interleaved Passive Sigma Delta Modulators Powered by Integrated Photovoltaics.

机译:使用集成光伏驱动的时间交错无源Sigma Delta调制器进行低功耗模数转换。

获取原文
获取原文并翻译 | 示例

摘要

Energy harvesting sensor nodes are often volumetrically constrained (< 5 mm3) but must deliver useful power to a variety of analog and digital subsystems. Depending on the energy scavenging transducer, a sensor node complemented with an energy harvesting system can expect to generate between 10 nanowatts and 10 microwatts in small volumes. Energy harvesting through photovoltaics provides the most consistent source of power, either through indoor or outdoor lighting, for energy-constrained microsystems, and can easily output 10 microwatts of power based on the amount of light input into the system. The focus of this work is to develop low power and low-voltage (subthreshold) analog to digital converters (ADCs) that maximize the die area available for integrated photovoltaics. Tradeoffs such as increasing area for performance have been explored with the development of time-interleaved (TI) passive sigma delta modulator- based ADCs. Two time-interleaved (TI) passive sigma-delta modulator-based ADCs, a two-channel and a four-channel modulator design, have been fabricated in 180 nm CMOS and evaluated for use in an energy-constrained sensor node. The designs demonstrate an increase in signal-to-noise and distortion ratio (SNDR) compared to a previous non-interleaved design, without significantly increasing the resulting ADC power consumption. Results indicate that trading area for performance has significant benefits, with a 0.5 bit improvement in ENOB resulting for every doubling of interleaved ADC channels. Overall, the 4-channel design has the best performance in terms of the energy/conversion step figure-of-merit (FOM). With a 400mV supply voltage, an effective sampling frequency of 100 kHz (OSR=8.3), and a Nyquist bandwidth of 6 kHz, the FOM is equal to 124 fJ/Cs. For an operating mode of 700mV supply voltage, an effective sampling frequency of 1.6 MHz (OSR=133.3), and a Nyquist bandwidth of 6 kHz, the FOM is equal to 208 fJ/Cs. The design consumes 11.1 nW at 400mV and 652 nW at 700mV with the described parameters, respectively. The ENOB is calculated to be 3.9 bits at 400mV and 9.0 bits at 700 mV. The ADC can operate with input voltages that are above full-scale due to the attenuation provided by the passive low-pass filter at the center of this design. Results also demonstrate that DSP hardware that implements calibration for sample-and-hold nonlinearities, gain, timing and bandwidth mismatches for time-interleaved passive ADC channels can show significant improvement in SNDR and ENOB, and operate within power budgets supplied by photovoltaic energy harvesting. The conjugate gradient method is proposed to compensate for jitter in an optically-delivered sampling clock generated by a subthreshold optical CDR circuit. Testing of the proposed ADC system was performed using a fixed supply as well as energy harvesting photodiodes.
机译:能量收集传感器节点通常在体积上受约束(<5 mm3),但必须向各种模拟和数字子系统提供有用的功率。取决于能量清除换能器,补充有能量收集系统的传感器节点有望以小体积产生10纳瓦至10微瓦的能量。通过光伏收集的能量为受能量限制的微型系统提供了通过室内或室外照明提供的最一致的电源,并且可以根据输入到系统中的光量轻松输出10微瓦的功率。这项工作的重点是开发低功耗和低压(亚阈值)模数转换器(ADC),以最大程度地利用集成光伏电池的裸片面积。随着基于时间交错(TI)的无源sigma delta调制器的ADC的开发,已经探索了权衡取舍,例如增加性能区域。已在180 nm CMOS中制造了两个基于时间交错(TI)的无源sigma-delta调制器的ADC,分别是两通道和四通道调制器,并经过了评估,可用于能量受限的传感器节点。与先前的非交错设计相比,这些设计展示了信噪比和失真比(SNDR)的增加,而没有显着增加由此产生的ADC功耗。结果表明,性能交易领域具有显着优势,交错ADC通道每增加一倍,ENOB就会提高0.5位。总体而言,就能量/转换步骤品质因数(FOM)而言,四通道设计具有最佳性能。在电源电压为400mV,有效采样频率为100 kHz(OSR = 8.3),奈奎斯特带宽为6 kHz的情况下,FOM等于124 fJ / Cs。对于700mV电源电压的工作模式,1.6 MHz的有效采样频率(OSR = 133.3),奈奎斯特带宽为6 kHz,FOM等于208 fJ / Cs。采用所描述的参数,设计分别在400mV时消耗11.1 nW,在700mV时消耗652nW。 ENOB在400mV时计算为3.9位,在700mV时计算为9.0位。由于该设计中心的无源低通滤波器提供了衰减,因此ADC可以在高于满量程的输入电压下工作。结果还证明,对时间交错的无源ADC通道实现采样和保持非线性,增益,时序和带宽不匹配的校准的DSP硬件可以显示SNDR和ENOB的显着改善,并且可以在光伏能量收集提供的功率预算内运行。提出了共轭梯度方法来补偿亚阈值光学CDR电路产生的光学采样时钟中的抖动。建议的ADC系统的测试是使用固定电源以及能量收集光电二极管进行的。

著录项

  • 作者

    Shaik, Khadar Baba.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 297 p.
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号